EXPONENTIATION OF OPERATOR LIE ALGEBRAS ON BANACH SPACES¹

BY ROBERT T. MOORE

Communicated by S. Smale, April 7, 1965

1. Introduction. By a C^{∞} Lie algebra of operators on a Banach space \mathfrak{X} we shall mean a pair (g, \mathfrak{D}) consisting of (a) a dense linear subset ("domain") \mathfrak{D} of the space \mathfrak{X} and (b) a finite dimensional real vector space g of operators $X, Y, Z \cdots$ defined on \mathfrak{D} such that $X\mathfrak{D} \subset \mathfrak{D}$ for all $X \in g$ (" C^{∞} condition") and such that the commutator Lie product [X, Y] = XY - YX carries $g \times g$ into g.

It is well known that every strongly continuous representation Uof a Lie group G on \mathfrak{X} gives rise to a number of different domains \mathfrak{D} of C^{∞} vectors for U on which the Lie algebra g of G may be represented to give such a C^{∞} Lie algebra (g, \mathfrak{D}) (cf. Segal [10], Gårding [4], Harish-Chandra [5], Cartier and Dixmier [2] and Nelson [8]). Here U(G) is a generalized exponential of (g, \mathfrak{D}) . Therefore we will call a C^{∞} Lie algebra of operators *exponentiable* in case the simply connected Lie group G whose Lie algebra is isomorphic with g has a strongly continuous representation U on \mathfrak{X} such that when $f \in \mathfrak{D}$:

(1)
$$\lim_{t \to 0} t^{-1} [U(\exp tX)f - f] = Xf$$

(here we have identified (g, \mathfrak{D}) with the Lie algebra of G). We will discuss the question: When is a C^{∞} Lie algebra of operators on \mathfrak{D} exponentiable? Nelson [8] gives a sufficient condition for the case of a Lie algebra of skew-symmetric operators on a Hilbert space H.

An operator X will be called a pregenerator on \mathfrak{D} in case it has a closure \overline{X} generating a strongly continuous one parameter group of operators in the sense of Hille and Phillips [6] (denoted by U[t, X] here). Sufficient conditions for this are given in [6]. A counter-example of Nelson [8] refutes the natural conjecture that every C^{∞} Lie algebra of pregenerators (each individually exponentiable) is exponentiable in the sense discussed above. We give a number of different sufficient conditions for the exponentiability of C^{∞} Lie algebras of pregenerators on Banach spaces. Various of the results can be extended to suitably defined " C^{1n} and " C^{2n} Lie algebras.

¹ This work was supported in part by the National Science Foundation, both through a Fellowship and through NSF GT 1611. Several of the results obtained form a part of a dissertation submitted to Princeton University in candidacy for the degree of Ph.D. The author extends his thanks to Professor E. Nelson for his many suggestions and encouragement.