APPROXIMATION OF BOUNDED FUNCTIONS BY CONTINUOUS FUNCTIONS

BY B. R. KRIPKE AND R. B. HOLMES

Communicated by V. Klee, June 15, 1965
We shall show that every bounded function on a paracompact space has a best approximation by continuous functions, and characterize the functions whose best approximators are unique. This is a special case of a measure-theoretic problem, whose setting is as follows. Let X be a topological space and μ a Borel measure on X which assigns positive mass to each nonempty open set, and has the property that $\mu(Y)=0$ if Y intersects a neighborhood of each point in a μ-null set. The latter condition is automatically fulfilled if each open cover of X has a countable subcover. Let L^{∞} be the space of essentially bounded real-valued μ-measurable functions on X, and give it the semi-norm $\|f\|=$ essential sup $|f|$. The bounded continuous functions on X form a closed subspace C of L^{∞}. We say that $g \in C$ is a best approximator to $f \in L^{\infty}$ if $\|f-g\|=\operatorname{dist}(f, C)=\inf \{\|f-h\|: h \in C\}$.

If $f \in L^{\infty}$ and $x \in X, f^{*}(x)=\lim \sup _{y \rightarrow x} f(y)=\inf \{$ ess sup of f over $U: U$ is a neighborhood of $x\} ; f_{*}=\lim \inf _{y \rightarrow x} f(y)$ has a similar definition. It is easy to verify that the functions f^{*} and f_{*} are defined everywhere, and are upper semi-continuous (usc) and lower semicontinuous (lsc) respectively.

Proposition. If X is any topological space and $f \in L^{\infty}$, then $2 \operatorname{dist}(f, C) \geqq d(f) \equiv \sup \left\{f^{*}(y)-f_{*}(y): y \in X\right\}$.

Proof. If $f^{*}(x)-f_{*}(x)>d(f)-\epsilon$ and $g \in C$ then one or the other of $\lim \sup _{y \rightarrow x}(f(y)-g(y))$ and $\lim \sup _{y \rightarrow x}(g(y)-f(y))$ is greater than $\frac{1}{2}(d(f)-\epsilon)$.

Theorem 1. If X is paracompact, then $g \in C$ is a best approximator to $f \in L^{\infty}$ if, and only if, $f^{*}-\frac{1}{2} d(f) \leqq g \leqq f_{*}+\frac{1}{2} d(f)$; every $f \in L^{\infty}$ has such a best approximator; and $\operatorname{dist}(f, C)=1 / 2 d(f)$.

Proof. Since $f_{*}+\frac{1}{2} d(f) \geqq f^{*}-\frac{1}{2} d(f)$, the first pair of inequalities is equivalent to the condition that for every $\epsilon>0$ and every $x \in X$, there be a neighborhood U of x such that (ess sup $|f(y)-g(y)|: y \in U$) $\leqq \frac{1}{2} d(f)+\epsilon$. This in turn is equivalent to the assertion that for every $\epsilon>0,|f(y)-g(y)|>\frac{1}{2} d(f)+\epsilon$ only on a μ-null set, which says that $\|f-g\| \leqq \frac{1}{2} d(f)$. It remains only to show that there is a continuous function which satisfies these inequalities. Since $f^{*}-\frac{1}{2} d(f)$

