CONSTRUCTION OF GLOBALLY CONVERGENT ITERATION FUNCTIONS FOR THE SOLUTION OF POLYNOMIAL EQUATIONS

BY J. F. TRAUB

Communicated by F. John, June 14, 1965

Iteration functions for the approximation of zeros of a polynomial P are usually given as explicit functions of P and its derivatives. We introduce a class of iteration functions which are themselves constructed according to a certain algorithm given below. The construction of the iteration functions requires only simple polynomial manipulation which may be performed on a computer.

Let P be a real monic polynomial of degree n with distinct zeros ρ_1, \dots, ρ_n and let the dominant zero ρ_1 be real. The theory may be extended to multiple zeros, dominant complex zeros, and subdominant zeros.

Let B(t) be an arbitrary polynomial of degree at most n-1 with $B(\rho_1) \neq 0$. Define a sequence of polynomials of degree n-1 by

$$G(0, t, B) = B(t), \quad G(\lambda + 1, t, B) = tG(\lambda, t, B) - \alpha_0(\lambda)P(t),$$
$$\lambda = 0, 1, \cdots,$$

where $\alpha_0(\lambda)$ is the leading coefficient of $G(\lambda, t, B)$. From the polynomial $G(\lambda, t, B) \equiv G_1(\lambda, t, B)$, form the polynomial $G_p(\lambda, t, B)$ for any positive integer p by

$$G_{p}(\lambda, t, B) = \sum_{k=0}^{p-1-k} [-P]^{p-1-k} \frac{G^{(p-1-k)}(\lambda, t, B)}{(p-1-k)!} V_{k}(t),$$

where $V_k(t)$ is formed by

$$V_0(t) = 1, \quad V_k(t) = P'(t)V_{k-1}(t) - \frac{P(t)}{k}V'_{k-1}(t).$$

Define an iteration function for *fixed* p and λ by

$$\phi_p(\lambda, t, B) = t - P(t) \frac{G_{p-1}(\lambda, t, B)}{G_p(\lambda, t, B)} \cdot$$

The global nature of the convergence is given by

THEOREM. Let t_0 be an arbitrary point in the extended complex plane such that $t_0 \neq \rho_2$, ρ_3 , \cdots , ρ_n and let $t_{i+1} = \phi_p(\lambda, t_i, B)$. Then for all sufficiently large but fixed λ , the sequence t_i is defined for all i and $t_i \rightarrow \rho_1$.