A JORDAN DECOMPOSITION FOR OPERATORS IN BANACH SPACE

BY SHMUEL KANTOROVITZ

Communicated by F. Browder, June 30, 1965

Operators T with real spectrum in finite dimensional complex Euclidian space may be characterized by the property

(1)
$$|e^{itT}| = O(|t|^k), \quad t \text{ real.}$$

Our result is a Jordan decomposition theorem for operators T in reflexive Banach space which satisfy (1) and whose spectrum (which is real because of (1)) has linear Lebesgue measure zero.

1. The Jordan manifold. Let X be a complex Banach space; denote by B(X) the Banach algebra of all bounded linear operators acting on X. For $m = 0, 1, 2, \dots, C^m$ is the topological algebra of all complex valued functions on the real line R with continuous derivatives up to the order m, with pointwise operations and with the topology of uniform convergence on every compact set of all such derivatives. Fix $T \in B(X)$. Following [3], we say that T is of class C^m if there exists a C^m -operational calculus for T, i.e., a continuous representation $f \rightarrow T(f)$ of C^m into B(X) such that T(1) = I, T(f) = T if $f(t) \equiv t$, and $T(\cdot)$ has compact support. The latter is then equal to the spectrum of $T, \sigma(T)$. It is known that if T satisfies (1), then it is of class C^m for $m \geq k+2$ and has real spectrum (cf. Lemma 2.11 in [3]).

From now on, let $T \in B(X)$ satisfy (1), and let $T(\cdot)$ be the (unique) C^{m} -operational calculus for T, for m fixed $\geq k+2$. We write:

1. $|f|_{m,T} = \sum_{j \leq m} \max_{\sigma(T)} |f^{(j)}|/j!, f \in C^{m};$

2. $|x|_{m,T} = \sup\{|T(f)x|; f \in C^m, |f|_{m,T} \le 1\}, x \in X;$

- 3. $D_m = \{x \in X; |x|_{m,T} < \infty\};$
- 4. $D = \bigcup_{m \ge k+2} D_m$.

We call D the Jordan manifold for T. It is an invariant linear manifold for any $V \in B(X)$ which commutes with T. If $\sigma(T)$ is a finite union of points and closed intervals, then there exists an $m \ge k+2$ such that $D = D_m = X$. This is true for m = k+2 if $\sigma(T)$ is a finite point set. It follows in particular that D_{k+2} contains every finite dimensional invariant subspace for T, hence all the eigenvectors of T. It is also true that D contains all the root vectors for T, and is therefore dense in X if the root vectors are fundamental in X.

THEOREM 1. Suppose that all nonzero points of $\sigma(T)$ are isolated.