THE GALOIS THEORY OF INFINITE PURELY INSEPARABLE EXTENSIONS

BY PAUL PONOMARENKO

Communicated by A. D. Mostow, June 20, 1965

Introduction. Given a field K of characteristic $p \neq 0$, denote by Der(K) the set of all derivations of K. Then Der(K) is a vector space over K, and a Lie subring of the ring of additive endomorphisms of K. Moreover, Der(K) is closed under pth powers. A Lie ring satisfying this additional closure property is called a restricted Lie ring. Take any subfield F of K such that K over F is of exponent one, i.e., $K^{p} \subset F$. Denote by Der(K/F) the set of all derivations of K which vanish on F. Then Der(K/F) is a vector subspace and restricted Lie subring of Der(K). On the other hand, take a restricted Lie subring D of Der(K) which is also a vector subspace over K. Let $\Phi(D)$ = { $x \in K | \lambda(x) = 0$ for every $\lambda \in D$ }. Then $\Phi(D)$ is a subfield of K such that K over $\Phi(D)$ is of exponent one. This gives a one-to-one correspondence between subfields F of K over which K is *finite* and of exponent one, and restricted Lie subrings of *finite* dimension over K(cf. [1] and [2]). The purpose of this note is to extend this Galois correspondence to the infinite dimensional case. The first half of the correspondence is valid regardless of the dimension of K over F, i.e., $\Phi(\text{Der}(K/F)) = F$ if $K^p \subset F$ [1, p. 183]. However, to establish the second half of the correspondence, one must put a stronger condition on the vector subspace of Der(K), namely, that of *p*-convexity.

p-convexity. Let us fix a field K of characteristic $p \neq 0$. Since we shall only consider subfields F for which $K^p \subset F$, we should designate K^p as our base field. For every $x \in K$, let H_x denote the set of all λ in Der(K) such that $\lambda(x) = 0$. H_x may be regarded as a "distinguished" hyperplane in Der(K). We call a subspace V of Der(K) *p*-convex if $V = \bigcap (V+H_x)$, the intersection being taken over all $x \in K$.

THEOREM 1. Let V be a vector subspace of Der(K) which is p-convex, and let $F = \Phi(V)$. Then Der(K/F) = V, which implies that every pconvex subspace of Der(K) is automatically a restricted Lie subring of Der(K). Conversely, if F is a subfield of K containing K^p , then Der(K/F)is p-convex.

PROOF. Let $\lambda \in \text{Der}(K/F)$. Take any element x of K. If x is in F, then $\lambda(x) = 0 = \mu(x)$ for any $\mu \in V$. Suppose that x is not in F. Let $E_x = K^p(x)$. Then V restricted to E_x must be a nonzero vector subspace of $D(E_x, K)$, the set of all derivations of E_x into K. Denote by