RESEARCH PROBLEMS

18. Fred Gross: Function theory

Let S be an arbitrary region. Does there exist a transcendental meromorphic function with the property that the pre-image $f^{-1}(S)$ is of finite measure? (Received July 16, 1965.)

19. Fred Gross: Function theory

In Volume 4 of the Michigan Mathematical Journal Paul Erdös asked the following question:

If A and B are two denumerable dense sets, does there exist an entire function which maps A onto B ?

This problem is quite difficult. One can ask, however, a simpler question.

Do there exist two dense denumerable sets A and B, such that, $f(z) \in A$ if and only if $z \in B$ implies that $f(z)$ is linear? More generally, do there exist two linearly independent functions $f(z)$ and $g(z)$ such that $f(z) \in A$ if and only if $g(z) \in B$. (Received July 16, 1965.)

20. Albert A. Mullin: Stochastic number-theory

The probability that a random natural number has the prime factor p is $1 / p$. Hence the probability that two random natural numbers have the common prime factor p is $1 / p^{2}$. Thus, the probability that two random natural numbers have no common prime factor (i.e., the probability that they are relatively prime) is $\prod_{p}\left(1-1 / p^{2}\right)$ $=1 / \zeta(2)=6 / \pi^{2}$, by Euler's Identity (an analytic version of unique factorization. What is the probability that two random natural numbers satisfy the condition that their mosaics have no prime in common? Clearly this measure is strictly positive but it is bounded above by $6 / \pi^{2}$. To what extent is statistical dependence crucial to the argument? What is the probability that a random natural number has only odd primes in its mosaic? (Received July 16, 1965.)

21. Richard Bellman: Differential equations

The equation $u^{\prime}(t)=\left(a+b u\left(t_{1}\right)\right) u(t), u(0)=c$, valid for $0 \leqq t \leqq t_{2}$, with $t_{2}>t_{1}$, shows that an equation of the form $u^{\prime}(t)=g\left(u(t), u\left(t_{1}\right)\right.$, $\left.u\left(t_{2}\right), \cdots, u\left(t_{N}\right)\right), u(0)=c, \quad 0<t_{1}<t_{2}<\cdots<t_{N}, \quad$ can have an infinite number of complex solutions and more than one real solution. What additional conditions on the solution ensure uniqueness of a real solution? (Received July 16, 1965.)

