ESSENTIALLY POSITIVE SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

BY GARRETT BIRKHOFF AND LEON KOTIN

Communicated by F. Browder, May 17, 1965
Consider an essentially positive [2] system of linear DE's, that is, any system of the form

$$
\begin{equation*}
d x_{i} / d t=\sum q_{i j}(t) x_{j}, \quad \quad q_{i j}(t)>0 \text { if } i \neq j . \tag{1}
\end{equation*}
$$

This maps the positive hyperoctant C of real $\left(x_{1}, \cdots, x_{n}\right)$-space into itself. The effect of (1) in a small increment of time $d t$ is, using formulas of Ostrowski [3], to map C into an interior polyhedral cone whose projective diameter is given for $P=\exp [Q(t) d t]=I+Q(t) d t+\cdots$ by

$$
\begin{equation*}
\ln \left\{\sup _{i, j, k, l}\left(p_{k i} p_{l j} / p_{k j} p_{l i}\right)\right\} \tag{2}
\end{equation*}
$$

This is maximized asymptotically (as $d t \downarrow 0$) by setting $k=i, l=j$, so that the numerator approaches 1 . Hence the projective diameter of $e^{Q(t) d t}(C)$ is, asymptotically,

$$
\begin{equation*}
\Delta=-\ln \left\{\inf _{i \neq j}\left[\left(q_{i j} q_{j i}\right) d t^{2}\right]\right\}, \quad q_{i j}=q_{i j}(t) \tag{3}
\end{equation*}
$$

By a basic theorem of [1], all projective distances in C are therefore contracted by a factor at most

$$
\begin{align*}
& \tanh (\Delta / 4)=\left(1-e^{-\Delta / 2}\right) /\left(1+e^{-\Delta / 2}\right)=1-\psi(t) d t \\
& \quad \text { where } \psi(t)=2\left[\inf _{i \neq j} q_{i j}(t) q_{j i}(t)\right]^{1 / 2} \tag{4}
\end{align*}
$$

This proves the following basic result.
Lemma. For any essentially positive system (1) of linear DE's, all projective distances in C are contracted by an asymptotic factor at most $1-\psi(t) d t$ in the time interval $(t, t+d t)$, where $\psi(t)$ is given by (4).

Integrating with respect to t, we deduce the
Theorem. For any essentially positive system (1) of linear DE's, let $\theta(\mathbf{x}(t), \boldsymbol{y}(t))$ denote the projective distance in C between two solutions of (1) which are positive on $[0, \infty)$. Then

$$
\begin{equation*}
\theta(x(t), y(t)) \leqq \theta(x(0), y(0)) \exp \left[-\int_{0}^{t} \psi(s) d s\right], \quad t>0 \tag{5}
\end{equation*}
$$

For example, consider the interesting case $d^{2} x / d t^{2}=p(t) x, p(t)>0$. Then

