RADON-FOURIER TRANSFORMS ON SYMMETRIC SPACES AND RELATED GROUP REPRESENTATIONS¹

BY S. HELGASON

Communicated by G. D. Mostow, May 7, 1965

In §2 we announce some results in continuation of [10], connected with the Radon transform. §1 deals with tools which also apply to more general questions and §§2–3 contain some applications to group representations. A more detailed exposition of §2 appears in Proceedings of the U. S.-Japan Seminar in Differential Geometry, Kyoto, June, 1965.

1. Radial components of differential operators. Let V be a manifold, v a point in V and V_{\bullet} the tangent space to V at v. Let G be a Lie transformation group of V. A C^{∞} function f on an open subset of V is called locally invariant if Xf = 0 for each vector field X on V induced by the action of G.

Suppose now W is a submanifold of V satisfying the following transversality condition:

(T) For each
$$w \in W$$
, $V_w = W_w + (G \cdot w)_w$ (direct sum).

If f is a function on a subset of V its restriction to W will be denoted \overline{f} .

LEMMA 1.1. Let D be a differential operator on V. Then there exists a unique differential operator $\Delta(D)$ on W such that

$$(Df)^- = \Delta(D)\bar{f}$$

for each locally invariant f.

The operator $\Delta(D)$ is called the *radial component* of D. Many special cases have been considered (see e.g. $[1, \S 2], [4, \S 5], [5, \S 3], [7, \S 7], [8, Chapter IV, §\S 3-5]).$

Suppose now dv (resp. dw) is a positive measure on V (resp. W) which on any coordinate neighborhood is a nonzero multiple of the Lebesgue measure. Assume dg is a bi-invariant Haar measure on G. Given $u \in C_c^{\infty}(G \times W)$ there exists [7, Theorem 1] a unique $f_u \in C_c^{\infty}(G \cdot W)$ such that

$$\int_{G \times W} F(g \cdot w) u(g, w) \, dg dw = \int_{V} F(v) f_u(v) \, dv \qquad (F \in C_c^{\infty}(G \cdot W)).$$

Let $\phi_u \in C_c^{\infty}(W)$ denote the function $w \to \int u(g, w) dg$.

¹ Work supported in part by the National Science Foundation, NSF GP-2600.