ON THE COUSIN PROBLEMS¹

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

It is well known that if Ω is a domain of holomorphy in \mathbb{C}^n then it is a Cousin I domain; it is also a Cousin II domain if and only if $H^2(\Omega, \mathbb{Z}) = 0$. In this work we prove that some general classes of domains which are not domains of holomorphy are both Cousin I and Cousin II domains. Recall that Ω is Cousin I (II) if and only if $H^1(\Omega, 0) = 0$ ($H^1(\Omega, 0^*) = 0$) where 0 is the sheaf of germs of holomorphic functions under addition and 0^* is the sheaf of germs of nowhere-zero holomorphic functions under multiplication. If $H^1(\Omega, \mathbb{Z})$ = 0 then " Ω Cousin II" implies " Ω Cousin I" and if $H^2(\Omega, \mathbb{Z}) = 0$ then " Ω Cousin I" implies " Ω Cousin II."

In what follows we take $n \ge 3$ since, for n = 2, Ω is Cousin I if and only if Ω is a domain of holomorphy [1].

DEFINITIONS. An open relatively compact set A in a complex manifold X is called q-convex if $A = \{z; z \in A_0, \phi(z) < 0\}$ where A_0 is a neighborhood of \overline{A} , ϕ is twice continuously differentiable in A_0 , grad $\phi \neq 0$ on ∂A , and the Levi form on ∂A has at least n-q+1 positive eigenvalues. If A and B are q-convex, $B \subset A$, and if there exists a function $\phi(z, t)$ ($z \in A_0, 0 \leq t \leq 1$) twice continuously differentiable in z such that the sets $D_t = \{z; z \in A_0, \phi(z, t) < 0\}$ are q-convex and lie in A_0 and $D_0 = A$, $D_1 = B$, then we say that A and B are q-convex homotopic. Example: if A, B are strictly convex then they are 1-convex homotopic.

Let K_1 , L_1 be open convex sets in the z_1 -plane, $0 \in L_1$, $\overline{L}_1 \subset K_1$, and set $A_1 = K_1 \setminus \overline{L}_1$. Let $K' = K_2 \times \cdots \times K_n$, $L' = L_2 \times \cdots \times L_n$ be open convex generalized polydiscs $(K_j, L_j$ lie in the z_j -plane) with $0 \in L'$, $\overline{L'} \subset K'$. All the previous sets are taken to be bounded. Set $G_0 = A_1 \times K'$, $G_1 = K_1 \times (K' \setminus \overline{L'})$, $G = G_0 \cup G_1$.

LEMMA 1. G is both Cousin I and Cousin II.

The proof that G is Cousin I is a straightforward generalization of the proof of [7, Hilfsatz]. Thus, it remains to show that $H^2(G, \mathbb{Z}) = 0$.

LEMMA 2. $H^r(G, \mathbb{Z}) = 0$ for $0 < r \le 2n$.

¹ This work was partially supported by the Alfred P. Sloan Foundation and by NASA Grant NGR 14-007-021.