ON THE COUSIN PROBLEMS ${ }^{1}$

BY AVNER FRIEDMAN

Communicated by F. Browder, June 7, 1965

It is well known that if Ω is a domain of holomorphy in C^{n} then it is a Cousin I domain; it is also a Cousin II domain if and only if $H^{2}(\Omega, Z)=0$. In this work we prove that some general classes of domains which are not domains of holomorphy are both Cousin I and Cousin II domains. Recall that Ω is Cousin I (II) if and only if $H^{1}(\Omega, \mathcal{O})=0\left(H^{1}\left(\Omega, \mathcal{O}^{*}\right)=0\right)$ where \mathcal{O} is the sheaf of germs of holomorphic functions under addition and \mathcal{O}^{*} is the sheaf of germs of nowhere-zero holomorphic functions under multiplication. If $H^{1}(\Omega, Z)$ $=0$ then " Ω Cousin II" implies " Ω Cousin I" and if $H^{2}(\Omega, \boldsymbol{Z})=0$ then " Ω Cousin I" implies " Ω Cousin II."

In what follows we take $n \geqq 3$ since, for $n=2, \Omega$ is Cousin I if and only if Ω is a domain of holomorphy [1].

Definitions. An open relatively compact set A in a complex manifold X is called q-convex if $A=\left\{z ; z \in A_{0}, \phi(z)<0\right\}$ where A_{0} is a neighborhood of \bar{A}, ϕ is twice continuously differentiable in A_{0}, $\operatorname{grad} \phi \neq 0$ on ∂A, and the Levi form on ∂A has at least $n-q+1$ positive eigenvalues. If A and B are q-convex, $B \subset A$, and if there exists a function $\phi(z, t)\left(z \in A_{0}, 0 \leqq t \leqq 1\right)$ twice continuously differentiable in z such that the sets $D_{t}=\left\{z ; z \in A_{0}, \phi(z, t)<0\right\}$ are q-convex and lie in A_{0} and $D_{0}=A, D_{1}=B$, then we say that A and B are q-convex homotopic. Example: if A, B are strictly convex then they are 1 -convex homotopic.

Let K_{1}, L_{1} be open convex sets in the z_{1}-plane, $0 \in L_{1}, \bar{L}_{1} \subset K_{1}$, and set $A_{1}=K_{1} \backslash \bar{L}_{1}$. Let $K^{\prime}=K_{2} \times \cdots \times K_{n}, L^{\prime}=L_{2} \times \cdots \times L_{n}$ be open convex generalized polydiscs (K_{j}, L_{j} lie in the z_{j}-plane) with $0 \in L^{\prime}$, $\bar{L}^{\prime} \subset K^{\prime}$. All the previous sets are taken to be bounded. Set $G_{0}=A_{1} \times K^{\prime}$, $G_{1}=K_{1} \times\left(K^{\prime} \backslash \bar{L}^{\prime}\right), G=G_{0} \cup G_{1}$.

Lemma 1. G is both Cousin I and Cousin II.
The proof that G is Cousin I is a straightforward generalization of the proof of [7, Hilfsatz]. Thus, it remains to show that $H^{2}(G, Z)=0$.

Lemma 2. $H^{r}(G, Z)=0$ for $0<r \leqq 2 n$.

[^0]
[^0]: ${ }^{1}$ This work was partially supported by the Alfred P. Sloan Foundation and by NASA Grant NGR 14-007-021.

