SOME SPACES WHOSE PRODUCT WITH E^1 IS E^4

BY J. J. ANDREWS AND LEONARD RUBIN¹

Communicated by O. G. Harrold, March 22, 1965

1. Introduction. If A is a collection of subsets of E^{a} , then $A^{*}=\bigcup\{a|a\in A\}$. A sequence A_{i} , $i=1, 2, 3, \cdots$, of locally finite disjoint collections of subsets of E^{a} is trivial if $A_{i+1}^{*}\subset \operatorname{Int}(A_{i}^{*})$, each element of A_{i} is a cube with handles semi-linearly imbedded in E^{a} , and the inclusion map $j:a' \rightarrow a$, where $a' \subset a \in A_{i}$ and $a' \in A_{i+1}$, is null homotopic.

If A_i , $i=1, 2, \cdots$, is a trivial sequence let G be the set of points of $E^2 - \bigcap A_i^*$ and components of $\bigcap A_i^*$. Let X be the corresponding decomposition space. The main result, Theorem 2, may now be stated.

THEOREM 2. If each element of A_i , $i = 1, 2, \dots$, is a solid torus, then $X \times E = E^4$.

This theorem is parallel to results in [1], [3], [4] and others. The proof is similar to that given in [4].

2. Some useful maps. Let $D = \{z | z \in E^2 \text{ and } |z| \leq 1\}$, $S = \{z | z \in E^2$ and $|z| = 1\}$, $D_1 = \{z | z \in E^2 \text{ and } |z| \leq 1/2\}$, $T = D \times S$ and $B = D_1 \times S$ $\subset T$. Let $p: D_1 \times E \to B$ be the universal covering of B where p is given by $p(x, t) = (x, e^{it})$ for $x \in D_1$, $t \in E$. Let $h: D_1 \times E \to T \times E$ by $h(x, t) = (x, e^{it}, t)$ and $q: T \times E \to T$ by q(x, s, t) = (x, s) where $x \in D$, $s \in S$ and $t \in E$. Hence qh(x, t) = p(x, t).

Let B' be a finite subcomplex of Int (B) such that the inclusion map $j: B' \rightarrow \text{Int}(B)$ is null homotopic. Using the homotopy lifting theorem, there exists $j^*: B' \rightarrow D_1 \times E$ such that:

$$D_1 \times E \xrightarrow{h} T \times E$$
$$j^* \nearrow \downarrow p \qquad \downarrow q$$
$$B' \xrightarrow{i} B \subset T$$

is commutative and both j^* and h are homeomorphisms.

If $u \in B'$, $hj^*(u) = (u, \psi(u))$ where $\psi: B' \to E$. If $(x, s) \in B'$ where $x \in D_1, s \in S$, then $j^*(x, s) = (x, w(x, s))$ where $w: B' \to E$. By commutativity,

¹ Supported in part by NSF GP 4006.