# CONCERNING A CON JECTURE OF WHYBURN ON LIGHT OPEN MAPPINGS 

BY LOUIS F. MCAULEY ${ }^{1}$<br>Communicated by L. Zippin, January 25, 1965

Introduction. Some important and fundamental theorems in complex analysis are simple consequences of theorems in the theory of light open mappings for 2-manifolds. This rather complete theory is largely the work of G. T. Whyburn [9], [10], [11]. One theorem which includes the well-known theorems of Darboux [4] and Stoillow [8] is the following:

Theorem (Whyburn). Suppose that fis a light open mapping of a disk $A$ (topological 2-cell) onto a disk $B$ such that (a) $f$ (Int $A)=\operatorname{Int} B$ and (b) $f \mid \mathrm{Bd} A$ is a homeomorphism of $\mathrm{Bd} A$ onto $\operatorname{Bd} B$. Then $f$ is $a$ homeomorphism.

In his paper [12], Whyburn has conjectured that if in the above theorem each of $A$ and $B$ is a topological $n$-cell, then $f$ is a homeomorphism. This is an extremely difficult problem. One result of this announcement provides an affirmative answer for special cases of this conjecture. Church and Hemmingsen [1], [2], [3] have made significant contributions on related problems. Meisters and Olech [7] have some results for very special types of light open mappings; namely, either locally 1-1 maps or locally 1-1 maps except on discrete sets of a certain type.

Here, each mapping is continuous and each space is metric. A mapping $f$ of a space $X$ into a space $Y$ is light iff $f^{-1} f(x)$ is totally disconnected for each $x$ in $X$. And, $f$ is open iff for each $U$ open in $X, f(U)$ is open relative to $f(X)$.

Suppose that $f$ is a light mapping of a space $X$ into a space $Y$. We shall say that the singular set $S_{f}$ of $f$ is the set of points $x$ in $X$ such that $f$ is not locally 1-1 at $x$; i.e., there is no set $U$ open in $X$ and containing $x$ such that $f \mid U$ is $1-1$. We consider here only mappings $f$ which preserve both the boundary and the interior of $X$ (both of which are assumed to be nonempty).

Theorem 1. Suppose that $X$ is a compact subset of a metric space $M$, Bd $X \neq 0$, Int $X \neq 0$, and $f$ is a light open mapping of $X$ into $M$ such that (1) $f(\operatorname{Int} X)=\operatorname{Int} f(X)$, (2) $f(\operatorname{Bd} X)=\operatorname{Bd} f(X)$, (3) the singular

[^0]
[^0]:    ${ }^{1}$ The author carried out research on these and various other related problems at the University of Virginia where he held an ONR Research Fellowship, 1962-1963.

