SOME HOMOTOPY GROUPS OF STIEFEL MANIFOLDS ${ }^{1}$

BY C. S. HOO AND M. E. MAHOWALD
Communicated by W. S. Massey, February 1, 1965

Paechter [7] made some computations of $\pi_{k+p}\left(V_{k+m, m}\right)$ where $V_{k+m, m}$ is the Stiefel manifold of m frames in $k+m$ space. In this note we give a table (Table 1) extending his results in the case where m is large. Since $V_{k+m, m} \rightarrow V_{k+m+1, m+1} \rightarrow S^{k+m}$ is a fibering it is clear that $\pi_{k+p}\left(V_{k+m, m}\right)$ depends only on k and p for $p \leqq m-2$. This is called the stable range and we feel that these stable groups are the most important ones. On the other hand for small values of m, one of us [4] has made extensive computations and the results are available.

James' periodicity [5, Theorem 3.1] is reflected in the table but the basic periodicity of period 8 is also present.

In [1] it is proved that if $n>12$, then $\pi_{j}(S O(n))=\pi_{j}(S O)$ $+\pi_{j+1}\left(V_{2 n, n}\right)$ for $j<2 n-1$. Hence it is easy to deduce the first fourteen nonstable groups of $S O(n)$ from this table.

Tables of homotopy groups are much more useful if generators are given. Instead of generators we settle for giving the order of the image of $i_{*}: \pi_{k+p}\left(S^{k}\right) \rightarrow \pi_{k+p}\left(V_{k+m, m}\right)$ (Table 2). One can construct the generators from this information and this map has important connections with Whitehead products [2].

The groups have been computed by using modified Postnikov towers [6]. An outline of the computation for one case, 6 mod 32, is given. The case $k \equiv 6 \mathrm{mod} 32$. This procedure is essentially the same as the Adams spectral sequence method.

Let $k=32 n+6$ and we suppose m is large. Consider the fibering $V_{32 n+6,7} \rightarrow V_{32 n+m, m+1} \rightarrow V_{32 n+m, m-6}$. We are only interested in groups in the homotopy stable range so that we can construct a new fibering

$$
\Sigma^{-1} V_{32 n+m, m-6} \rightarrow V_{32 n+6,7} \rightarrow V_{32 n+m, m+1}
$$

We will build the modified Postnikov tower to this fibering. By [3] the cohomology of $V_{32 n+m, m+1}$ is given by

$$
\begin{aligned}
H^{i}\left(V_{32 n+m, m+1} ; Z_{2}\right) & =0, \quad 0<i<32 n-1 . \\
& =Z_{2}, \quad 32 n-1 \leqq i \leqq 32 n+m-1 .
\end{aligned}
$$

Let h_{i} generate $H^{i}\left(V_{32 n+m, m+1} ; Z_{2}\right)$ when it is nonzero. Then $S q^{i} h_{i}$
${ }^{1}$ This research was supported by a grant from the U. S. Army Research Office (Durham).

