GENERALIZED UNITARY OPERATORS¹

BY FUMI-YUKI MAEDA

Communicated by Maurice Heins, March 10, 1965

1. Let C be the complex field and Γ be the unit circle $\{\lambda \in C: |\lambda| = 1\}$. For a non-negative integer m or for $m = \infty$, let $C^m(\Gamma)$ be the space of all m-times continuously differentiable functions on Γ . (Here we consider Γ as a C^{∞} -manifold in the natural way. Thus, any $f \in C^m(\Gamma)$ can be identified with an m-times continuously differentiable periodic function $f(\theta)$ of a real variable θ with period 2π .) $C^m(\Gamma)$ is an algebra as well as a Banach space if m is finite, a Fréchet space if $m = \infty$, with the usual sup-norms for derivatives.

We shall say that a mapping γ of Γ into *C* is a *C*^{*m*}-curve if γ can be extended onto a neighborhood *V* of Γ (the extended map will also be denoted by γ) in such a way that it is one-to-one on *V* and γ and γ^{-1} are both *m*-times continuously differentiable (as functions in two variables) on *V* and $\gamma(V)$ respectively.

Let E be a Hausdorff locally convex space over C such that the space $\mathcal{L}(E)$ of all continuous linear operators on E endowed with the bounded convergence topology is quasi-complete.

2. $C^{m}(\gamma)$ -operators.

DEFINITION. Let γ be a C^m -curve. $T \in \mathfrak{L}(E)$ is called a $C^m(\gamma)$ operator if there exists a continuous algebra homomorphism W of $C^m(\Gamma)$ into $\mathfrak{L}(E)$ such that W(1) = I and $W(\gamma) = T$. If γ is the identity map: $\gamma(\theta) = e^{i\theta}$, then a $C^m(\gamma)$ -operator is called a C^m -unitary operator. (Cf. Kantrovitz' approach in [1].)

THEOREM 1. If T is a $C^{m}(\gamma)$ -operator, then $Sp(T) \subseteq \gamma(\Gamma)$.²

If H is a Hilbert space, $T \in \mathfrak{L}(H)$ is a C⁰-unitary operator if and only if it is similar to a unitary operator on H. In this sense, C^m-unitary operators on E generalize the notion of unitary operators on a Hilbert space.

The homomorphism W in the above definition is uniquely determined by T and γ . Thus, we call W the $C^m(\gamma)$ -representation for T. The uniqueness can be derived from the following approximation theorem: Given a C^m -curve γ , let λ_0 be a point inside the Jordan curve

¹ This research was supported by the U. S. Army Research Office (Durham, North Carolina) under Contract No. DA-31-124-ARO(D)288.

² Sp(T) is the spectrum of T in Waelbroeck's sense. See [2] for the definition.