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1. Let S denote the classical family of schlicht functions on the 
unit disk normalized by the conditions / ( 0 ) = 0 , / ' (0) = 1. Under a 
suitable metric such as d(f, g) = sup {ƒ (JS)-- g(z)\ :\z\ = 1 / 2 } it is a 
compact metric space. Let 0 < r < l . We are interested in the closed 
subspaces Br= {fGS: \f(z)\ <l/r] and Cr = {fGS: ƒ(*)$£>(ƒ)}, 
where D(J) is a domain of outer conformai radius 1/r with respect to 
the point a t infinity. The general problem is to determine the explicit 
region of values V(T) of certain continuous functions T from one of 
these spaces F into some manifold M. We also ask what (extremal) 
functions in .Fare mapped by T into dV(T), the boundary of V(T). 
In particular consider the function 

(*) T(f) = (f>(.zi),f(zi), • • • ,ƒ*(*,), • • • ,fM, • • • ,ƒ - («- ) ) , 

where fk(zj) =-ff(/, Zj, k) denotes the value of the feth derivative of ƒ 
a t Zj, except that, for technical reasons H is interpreted as a continu
ous function into the logarithmic covering surface when Zj?*Q and 
fe = 0 o r 1. 

The well-known results for the case F=S, m = l, si = 0, due to 
Spencer and Schaeffer, can be found in [lO]. Royden [ l l ] indicated 
the more general result when F=S. Their key tools were Teich-
miiller's Theorem [10, p. 93] and their variational method. By 
using Jenkins' General Coefficient Theorem [7] and a form of the 
Brouwer Fixed Point Theorem we are able to generalize some of their 
results to a somewhat wider class of functions T and spaces F. 

2. For the functions T defined by (*) there are certain quadratic 
differentials P(w)dw2, indicated by the Teichmüller Principle [8, p. 
48], which we call admissible with respect to T. We call the pair 
(P(w)dw2,f(z)) an admissible association with respect to T if P(w)dw2 

is admissible with respect to T, /G-F, ƒ({ \z\ < l } ) is an admissible 
domain with respect to P(w)dw2 in the sense of Jenkins [8, p. 49], 
and {f(zj) : 1 Sj — m} contains the poles of P(w)dw2 in ƒ ({ | z\ < 1}). 
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