A CONJECTURE OF J. NAGATA ON DIMENSION AND METRIZATION¹

BY PHILLIP A. OSTRAND

Communicated by R. P. Boas, March 10, 1965

THEOREM 1. A metrizable space X is of dimension $\leq n$ if and only if X admits a metric compatible with the topology which satisfies the condition (n): For any n+3 points x, y_1, \dots, y_{n+2} of X there exist distinct indices i, j such that $d(y_i, y_j) \leq d(x, y_j)$.

In this paper we outline briefly a proof of Theorem 1, which was conjectured by J. Nagata [1].

By dimension we shall always mean covering dimension. A family of subsets of X is discrete if each point of X has a neighborhood which meets at most one member of the family. For a subset A of X and a family C of subsets of X, let S(A, C) denote the union of A and all those $C \in C$ such that $C \cap A \neq \emptyset$. For each integer $n \ge 0$, let

$$S^{n}(A, \mathbb{C}) = \begin{cases} A & \text{if } n = 0, \\ S(S^{n-1}(A, \mathbb{C}), \mathbb{C}) & \text{if } n > 0; \end{cases}$$
$$[\mathbb{C}]^{n} = \{S^{n}(C, \mathbb{C}) : C \in \mathbb{C}\}.$$

Let X be a metrizable space of dimension $\leq n$. For each positive integer j there exist n+1 discrete families of open sets, $\mathfrak{U}_j^1, \mathfrak{U}_j^2, \cdots, \mathfrak{U}_j^{n+1}$ such that if $\mathfrak{U}_j = \bigcup_{i=1}^{n+1} \mathfrak{U}_j^i$, then:

(1) each \mathfrak{U}_j covers X;

(2) for each $x \in X$, $\{S(x, \mathfrak{U}_j): j=1, 2, \cdots\}$ is a neighborhood base at x;

(3) $[\mathfrak{U}_{j+1}]^{\mathfrak{z}_1}$ refines \mathfrak{U}_j for each j;

(4) if j < k and $1 \le i \le n+1$, each member of $[\mathfrak{U}_k]^{\mathfrak{s}_1}$ meets at most one member of $\mathfrak{U}_j^{\mathfrak{s}_1}$.

The \mathfrak{U}_{j}^{i} are defined inductively on j. Their construction relies on a new characterization of dimension [2].

THEOREM 2. A metrizable space X is of dimension $\leq n$ if and only if for each open cover C of X there exist n+1 discrete families of open sets, $\mathfrak{U}^1, \mathfrak{U}^2, \cdots, \mathfrak{U}^{n+1}$ such that $\bigcup_{i=1}^{n+1} \mathfrak{U}^i$ is a cover of X which refines C.

PROOF OF THEOREM 1. Let R^* denote the set of dyadic rationals in the open interval (0, 1). For each $m \in R^*$ there exist n+1 discrete

¹ This research was supported in part by a National Science Foundation Fellowship.