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1. Introduction. The purpose of this note is to give an example of 
an annihilator algebra which is not dual ; no other such example has 
been published. Here we construct a semi-simple, normed, anni
hilator algebra which has a closed two-sided ideal which is not an 
annihilator algebra. Every dual algebra is an annihilator algebra by 
definition, and every closed ideal in a semi-simple dual algebra is a 
dual algebra by a theorem of Kaplansky ([2, Theorem 2, p. 690] or 
(iii) in the text of this note). Noting these facts, it follows that the 
example we construct is not a dual algebra. 

Whether every closed two-sided ideal in an annihilator algebra was 
necessarily an annihilator algebra had been a question of long stand
ing. 

The example given here is a normed algebra. The algebra is a Q-
algebra (see [4, p. 373]), but not, however, a Banach algebra in the 
given norm. Therefore these questions remain open for the special 
case of a Banach algebra. 

2. The example. Let lv be the algebra of ^-summable complex 
sequences with multiplication performed coordinate-wise. Set Ai = ll, 
A2 = l2 and A = Ai($A2 (the direct sum of Ai and A2), For XÇELA, we 
shall write x = (xi, x2), where XIG^4J, x2ÇzA2. X\(ï) and x2(i) will denote 
the ith. coordinate of xi and x2 in Z1 and Z2, respectively. 

We shall define a norm on A such that A is an annihilator algebra, 
but not dual, in the topology of this norm. 

First we define, for xÇzA, 

( oo oo \ 1/2 

ZI*i(;) |2 + ZI*2(i)|2) . 
Note that p(x) is a norm on A. 

Secondly, since Z1 is properly contained in Z2, we may choose a non
zero linear functional F on Z2 such that F(x)=0 for xÇZ1. Further
more, since (Z2)2 = ZX, F is zero on (Z2)2. Now we define, for x£^4, 
x = (xi, x2), 
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