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We give here a quaternionic analogue (Theorem 4) of the Hodge 
decomposition theorem [2, p. 26] for a Riemannian manifold with 
holonomy group contained in Sp(w)XSp(l). Applying Chern's theo
rem in [ l ] (also [3]), we obtain some consequences on Betti numbers 
(Theorem 5). 

Let Kn denote the w-dimensional vector space over the field K of 
quaternions, with the inner product 

1 w 

(P , q) = — JL (P4i + q<Pi)> 

where 

P = (Ph * * " 9 Pn), q = (qi, ' ' ' , qn) and 
o , l . , 2 z 

pi = pi + pa + pij + pik, 

qi = qi + qa + q%J + qik 

are quaternions. 
Let Sp(n) be the set of all endomorphisms, A, of Kn, satisfying the 

identity (Ap, Aq) = (p, q). Sp(w) is the set of all nXn matrices pre
serving the inner product. Then Sp(l) is the set of all unit quater
nions. We define the action of Sp(n) XSp(l) on Kn as follows: 

(A, X)p = Ap\, for ( 4 , X) G Sp(n) X Sp(l), 

i.e., we multiply p on the left by the matrix A and on the right by 
the unit quaternion X. 

DEFINITION. We define three skew symmetric bilinear forms Qj, 0 / 
and &K on Kn as follows : 

®i(p, q) = (pi, q), 

®j(p, q) = (pj, q) and 

Ûx(p, q) = (pk, q). 

Note that fir, Qj and QK may be thought of as exterior 2-forms of 
Kn considered as a 4w-dimensional real vector space. 
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