TOPOLOGY OF QUATERNIONIC MANIFOLDS

BY VIVIAN YOH KRAINES ${ }^{1}$

Communicated by S. S. Chern, December 30, 1964
We give here a quaternionic analogue (Theorem 4) of the Hodge decomposition theorem [2, p. 26] for a Riemannian manifold with holonomy group contained in $\operatorname{Sp}(n) \times \operatorname{Sp}(1)$. Applying Chern's theorem in [1] (also [3]), we obtain some consequences on Betti numbers (Theorem 5).

Let K^{n} denote the n-dimensional vector space over the field K of quaternions, with the inner product

$$
(p, q)=\frac{1}{2} \sum_{i=1}^{n}\left(p_{i} \bar{q}_{i}+q_{i} \bar{p}_{i}\right),
$$

where

$$
\begin{aligned}
p & =\left(p_{1}, \cdots, p_{n}\right), \quad q=\left(q_{1}, \cdots, q_{n}\right) \text { and } \\
p_{i} & =p_{i}^{0}+p_{i}^{1} i+p_{i}^{2} j+p_{i}^{3} k, \\
q_{i} & =q_{i}^{0}+q_{i}^{1} i+q_{i}^{2} j+q_{i}^{3} k
\end{aligned}
$$

are quaternions.
Let $\operatorname{Sp}(n)$ be the set of all endomorphisms, A, of K^{n}, satisfying the identity $(A \boldsymbol{p}, A \boldsymbol{q})=(\boldsymbol{p}, \boldsymbol{q}) . \operatorname{Sp}(n)$ is the set of all $n \times n$ matrices preserving the inner product. Then $\operatorname{Sp}(1)$ is the set of all unit quaternions. We define the action of $\operatorname{Sp}(n) \times \operatorname{Sp}(1)$ on K^{n} as follows:

$$
(A, \lambda) p=A p \lambda, \quad \text { for }(A, \lambda) \in \operatorname{Sp}(n) \times \operatorname{Sp}(1),
$$

i.e., we multiply \boldsymbol{p} on the left by the matrix A and on the right by the unit quaternion λ.

Definition. We define three skew symmetric bilinear forms Ω_{I}, Ω_{J} and Ω_{K} on K^{n} as follows:

$$
\begin{aligned}
& \Omega_{I}(p, q)=(p i, q), \\
& \Omega_{J}(p, q)=(p j, q) \text { and } \\
& \Omega_{K}(p, q)=(p k, q) .
\end{aligned}
$$

Note that Ω_{I}, Ω_{J} and Ω_{K} may be thought of as exterior 2 -forms of K^{n} considered as a $4 n$-dimensional real vector space.

[^0]
[^0]: ${ }^{1}$ This research is supported by NSF Contract No. GP-1610. The author wishes to express her gratitude to Professor Shoshichi Kobayashi.

