THE HAUPTVERMUTUNG AND THE POLYHEDRAL SCHOENFLIES THEOREM

BY P. M. RICE
Communicated by M. L. Curtis, December 28, 1964

1. Introduction. M. L. Curtis [1] has conjectured that the double suspension of a Poincaré manifold is a 5 -sphere. If this is true, it gives counterexamples to the Hauptvermutung, the closed star conjecture, and the polyhedral Schoenflies theorems. We prove here that the only way to get a noncombinatorial triangulation of a manifold is, essentially, to multiply suspend a combinatorial manifold which is not a sphere. As a corollary, we establish that, modulo the Poincaré conjecture, one of the polyhedral Schoenflies theorems is equivalent to the Hauptvermutung.
2. Terminology. The Hauptvermutung is the conjecture that any two triangulations of an n-manifold are piecewise linearly homeomorphic. It is convenient to consider two conjectures which together imply the Hauptvermutung. The first is that any triangulation of an n-manifold is combinatorial (meaning that the link of any vertex is a combinatorial ($n-1$)-sphere), and the second is that any two combinatorial triangulations of an n-manifold are piecewise linearly homeomorphic. We will call the first of these $H(n) . H(n)$ is known for $n=1,2,3 \operatorname{PS}(n)$ will denote the conjecture that, if a combinatorial ($n-1$)-sphere S is embedded as a subcomplex of a triangulated n sphere T, then S is locally flat in $T \cdot \operatorname{PS}(n)$ is known for $n=1,2,3$. $P(n)$ will be the n-dimensional Poincaré conjecture, which is known except for $n=3,4 . S^{n}$ will be any space homeomorphic to the n-sphere, $X \cong Y$ means X is homeomorphic to $Y, X \circ Y$ is the topological join of X and Y, and $S(X)$ is the suspension of X.

3. Main result.

Theorem. If there is a noncombinatorial triangulation of an n-manifold M, then there is a combinatorial m-manifold $K^{m}, m \geqq 3$, such that
(i) K^{m} is a homology m-sphere but $K^{m} \neq S^{m}$ and
(ii) $K^{m} \circ S^{n-m-1} \cong S^{n}$.

Proof. Let v be a vertex of M such that $\mathrm{LK}(v, M)$, the link of v in M, is not a combinatorial $(n-1)$-sphere. If $\mathrm{LK}(v, M)=K^{n-1}$ is a combinatorial manifold, then $S\left(K^{n-1}\right) \cong S^{n}$ by Theorem 4 of [2] and the theorem is proved. By induction, if $K^{p} \circ S^{n-p-1} \cong S^{n}$ but K^{p} is not

