$=0$ and $K L^{p}=L$ if and only if every finite-dimensional L-module is completely reducible. The latter implies that $\operatorname{Ext}_{V(L)}^{1}(M, N)=0$ for all $V(L)$-modules M and N, finite dimensional or not, and therefore all $V(L)$-modules are projective and $V(L)$ has global dimension zero, i.e., $\operatorname{Ext}_{V(L)}^{n}(M, N)=0$ for all $n \geq 1$ and for all M and N.

Bibliography

1. S. Eilenberg and J. C. Moore, Limits and spectral sequences, Topology 1 (1961), 1-23.
2. G. Hochschild, Representations of restricted Lie algebras of characteristic p, Proc. Amer. Math. Soc. 5 (1954), 603-605.
3. N. Jacobson, Lie algebras, Interscience, New York, 1962.
4. J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (to appear).

Yale University

THE COHOMOLOGY OF THE STEENROD ALGEBRA; STABLE HOMOTOPY GROUPS OF SPHERES ${ }^{1,2}$

BY J. PETER MAY

Communicated by W. S. Massey, November 6, 1964
In this paper, we state some of the results obtained by application of the methods of [4] to the study of the cohomology of the Steenrod algebra A. In brief, our results are a complete determination of $H^{s, t}(A)$ for $t-s \leqq 42$ in the $\bmod 2$ case, and for $t-s$ $\leqq 2(p-1)\left(2 p^{2}+p+2\right)-4$ in the $\bmod p$ case, $p>2$. Due to the existence of the Adams spectral sequence [1], these results give information about the stable homotopy groups of spheres.

We recall that the mod p Adams spectral sequence $\left\{E_{r}\right\}$ (for the sphere) has differentials $\delta_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$ and satisfies the properties:

$$
\begin{equation*}
E_{2}^{s, t} \cong H^{s, t}(A) \text { as a } Z_{p} \text {-algebra. } \tag{1}
\end{equation*}
$$

Each E_{r} is a differential Z_{p}-algebra.
(3) $\left\{E_{\infty}^{s, t} \mid t-s=k\right\}$ provides a composition series for $\pi_{k}(S ; p$) (relative to a suitable filtration) ; here $\pi_{k}(S, p)$ denotes the stable homotopy group $\pi_{k}(S)$ modulo the subgroup of elements whose order is finite and prime to p.

[^0]
[^0]: ${ }^{1}$ During the preparation of this paper, the author was partially supported by National Science Foundation grant number NSF-GP-1853.
 ${ }^{2}$ The work announced here is contained in the author's doctoral thesis, submitted to Princeton University.

