A GENERALIZATION OF THE HILTON-MILNOR THEOREM

BY GERALD J. PORTER¹

Communicated by J. Milnor, November 19, 1964

The Hilton-Milnor theorem states that $\Omega \bigvee_{i=1}^{n} \Sigma X_{i}$ is homotopy equivalent to a weak infinite product, $\prod_{i=1}^{\infty} \Omega \Sigma X_{i}$, where each $X_{i}, i > n$, is a smash product of the X_{i} 's, $i \leq n$. In this note we extend this theorem to the 'wedges' lying between $\bigvee_{i=1}^{n} \Sigma X_{i}$ and $\prod_{i=1}^{n} \Sigma X_{i}$.

It will be assumed that all spaces are connected countable CWcomplexes with base points. $T_i(X_1, \dots, X_n)$ is the subset of $X_1 \times \dots \times X_n$ consisting of those points with at least *i* coordinates at base points. T_0 is the cartesian product and T_{n-1} is the space studied by Hilton and Milnor. T_{n-1} will also be denoted by $\bigvee_{j=1}^n X_j$. The smash product $\Lambda(X_1, \dots, X_n)$ is the quotient space $T_0(X_1, \dots, X_n)/T_1(X_1, \dots, X_n)$. Define $X^{(n)}$ inductively by $X^{(0)} = S^0$ and $X^{(n)} = \Lambda(X^{(n-1)}, X)$, for n > 0.

The *n*-fold suspension, $\Sigma^n X$, is defined to be $\Lambda(S^n, X)$. The loop space of X, ΩX , is the set of maps, $f: I \to X$, such that f(0) = f(1) = *. We shall abbreviate $(\Sigma X_1, \dots, \Sigma X_n)$ and $(\Omega X_1, \dots, \Omega X_n)$ by $\Sigma(X_1, \dots, X_n)$ and $\Omega(X_1, \dots, X_n)$, respectively.

THEOREM 1. $\Omega T_i \Sigma(X_1, \dots, X_n)$ is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma X_j$, where each X_j is equal to $\Sigma^r \Lambda(X_1^{(11)}, \dots, X_n^{(j_n)})$ for some (n+1)-tuple, (r, j_1, \dots, j_n) , depending upon j. Moreover, the set of (n+1)-tuples over which the product is taken is computable.

If i=n-1, Theorem 1 is the Hilton-Milnor theorem. It was proven in [1] by Hilton when the X_i are spheres and extended to the general case by Milnor [2].

We shall sketch the proof of Theorem 1, when $n-i \ge 2$. The details will appear in [3].

The inclusion map $j: T_i(X_1, \dots, X_n) \to T_0(X_1, \dots, X_n)$ may be replaced by a homotopy equivalent fibre map, $p: E \to T_0$, with fibre F_i . It is easily seen that when $n-i \ge 2$, the short exact sequence

$$* \to \Omega F_i \to \Omega E \to \Omega T_0 \to *$$

splits yielding:

¹ This research was supported in part by National Science Foundation Grant GP-1740.