A GENERALIZATION OF THE HILTON-MILNOR THEOREM

BY GERALD J. PORTER ${ }^{1}$
Communicated by J. Milnor, November 19, 1964

The Hilton-Milnor theorem states that $\Omega \mathrm{V}_{i=1}^{n} \Sigma X_{i}$ is homotopy equivalent to a weak infinite product, $\prod_{i=1}^{\infty} \Omega \Sigma X_{i}$, where each $X_{i}, i>n$, is a smash product of the X_{i} 's, $i \leqq n$. In this note we extend this theorem to the 'wedges' lying between $\mathrm{V}_{i=1}^{n} \Sigma X_{i}$ and $\prod_{i=1}^{n} \Sigma X_{i}$.

It will be assumed that all spaces are connected countable CWcomplexes with base points. $T_{i}\left(X_{1}, \cdots, X_{n}\right)$ is the subset of $X_{1} \times \cdots \times X_{n}$ consisting of those points with at least i coordinates at base points. T_{0} is the cartesian product and T_{n-1} is the space studied by Hilton and Milnor. T_{n-1} will also be denoted by $\bigvee_{j=1}^{n} X_{j}$. The smash product $\Lambda\left(X_{1}, \cdots, X_{n}\right)$ is the quotient space $T_{0}\left(X_{1}, \cdots, X_{n}\right) / T_{1}\left(X_{1}, \cdots, X_{n}\right)$. Define $X^{(n)}$ inductively by $X^{(0)}=S^{0}$ and $X^{(n)}=\Lambda\left(X^{(n-1)}, X\right)$, for $n>0$.

The n-fold suspension, $\Sigma^{n} X$, is defined to be $\Lambda\left(S^{n}, X\right)$. The loop space of $X, \Omega X$, is the set of maps, $f: I \rightarrow X$, such that $f(0)=f(1)=*$. We shall abbreviate $\left(\Sigma X_{1}, \cdots, \Sigma X_{n}\right)$ and $\left(\Omega X_{1}, \cdots, \Omega X_{n}\right)$ by $\Sigma\left(X_{1}, \cdots, X_{n}\right)$ and $\Omega\left(X_{1}, \cdots, X_{n}\right)$, respectively.

Theorem 1. $\Omega T_{i} \Sigma\left(X_{1}, \cdots, X_{n}\right)$ is homotopy equivalent to a weak infinite product, $\prod_{j=1}^{\infty} \Omega \Sigma X_{j}$, where each X_{j} is equal to $\Sigma^{r} \wedge\left(X_{1}^{(11)}, \cdots, X_{n}^{\left(y_{n}\right)}\right)$ for some $(n+1)$-tuple, $\left(r, j_{1}, \cdots, j_{n}\right)$, depending upon j. Moreover, the set of $(n+1)$-tuples over which the product is taken is computable.

If $i=n-1$, Theorem 1 is the Hilton-Milnor theorem. It was proven in [1] by Hilton when the X_{i} are spheres and extended to the general case by Milnor [2].

We shall sketch the proof of Theorem 1 , when $n-i \geqq 2$. The details will appear in [3].

The inclusion map $j: T_{i}\left(X_{1}, \cdots, X_{n}\right) \rightarrow T_{0}\left(X_{1}, \cdots, X_{n}\right)$ may be replaced by a homotopy equivalent fibre map, $p: E \rightarrow T_{0}$, with fibre F_{i}. It is easily seen that when $n-i \geqq 2$, the short exact sequence

$$
* \rightarrow \Omega F_{i} \rightarrow \Omega E \rightarrow \Omega T_{0} \rightarrow *
$$

splits yielding:

[^0]
[^0]: ${ }^{1}$ This research was supported in part by National Science Foundation Grant GP-1740.

