SOME RESULTS CONCERNING COMPLETELY 0-SIMPLE SEMIGROUPS

BY GÉRARD LALLEMENT AND MARIO PETRICH
Communicated by E. Pitcher, July 21, 1964

We follow the notation and terminology of [1]. A semigroup T with zero is said to be 0-rectangular if it has the property: if all the products at the vertices of a closed polygonal line (with a finite number of vertices) of the multiplication table are all but one equal to a nonzero element m and the remaining product is not zero, then it is also equal to m. A rectangular 0 -band is a Rees matrix semigroup with zero over the one-element group.

Theorem 1. Let $S=\operatorname{Mr}^{\circ}(G ; I, \Lambda ; P)$. Then the following statements are equivalent:
(a) $S \cong G \times E / G \times\{0\}$, where E is a rectangular 0 -band;
(b) there exist invertible matrices $U(I \times I)$ and $V(\Lambda \times \Lambda)$ such that $Q=V P U$ is a regular matrix all of whose nonzero entries are equal to 1 ;
(c) there exist mappings $\alpha: I \rightarrow G, \beta: \Lambda \rightarrow G$ such that $p_{\lambda_{i}}=\beta(\lambda) \alpha(i)$ if $p_{\lambda_{i}} \neq 0$;
(d) S is 0-rectangular;
(e) if $p_{\lambda_{1} i_{1}}, p_{\lambda_{1} i_{2}}, p_{\lambda_{2} i_{2}}, \cdots, p_{\lambda_{n} i_{n}}, p_{\lambda_{n} i_{1}} \neq 0$, then $p_{\lambda_{1} i_{1}}^{-1} p_{\lambda_{1} i_{2}} p_{\lambda_{2} i_{2}}^{-\frac{1}{2}} \cdots$

(f) S has a subsemigroup intersecting each $\mathfrak{H C}$-class of S in exactly one element.

The semigroup in (f) need not be unique. We note that an analogous result is valid for completely simple semigroups (i.e., without zero) ; in such a case (b) and (c) remain essentially the same, (a) becomes $S \cong G \times E, E$ is a rectangular band, in (d) "0-rectangular" is replaced by "rectangular," in (e) it suffices to take four entries of P at a time, and (f) states that idempotents form a semigroup (and thus in this case the semigroup in (f) is unique).

An ideal I of a semigroup T is said to be a matrix ideal of T if: for all $a, b, c \in T$, (a) $a T b \subseteq I$ implies $a \in I$ or $b \in I$, (b) $a b c \in I$ implies $a b \in I$ or $b c \in I$.

Theorem 2. Let S be a semigroup with a completely 0-simple ideal M. In order that there exist an M-homomorphism of S onto M, it is necessary and sufficient that (0) be a matrix ideal of S, and the restriction to M of the finest congruence ρ on S, having 0 as one of its classes and such that S / ρ is a rectangular 0 -band, coincides with the \mathfrak{H}-equivalence on M.

