IN-GROUPS AND IMBEDDINGS OF n-COMPLEXES IN ($n+1$)-MANIFOLDS

BY LEE NEUWIRTH

Communicated by J. Milnor, May 20, 1964
Let K^{n} denote an n-dimensional subcomplex of a closed orientable ($n+1$)-manifold, M^{n+1}.

Denote the n-simplices of K^{n} by $\tau_{1}, \tau_{2}, \cdots, \tau_{p}$, and the $(n-1)$ simplices of K^{n-1} by $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{q}$. Let F denote the free (not free abelian) group generated by $\tau_{i}, \tau_{2}, \cdots, \tau_{p}$. Assume M^{n+1}, the τ_{i} and σ_{j} have been oriented. Let l_{j} be a nice small loop about σ_{j}, oriented in such a way that the orientation of l_{j} and σ_{j} taken together agrees with that of M^{n+1}. As Milnor suggests, l_{j} can be taken to be the link of σ_{j} in the star neighborhood of $\sigma_{j} . l_{j}$ intersects in some cyclic order the n-simplices of K^{n} which have σ_{j} as a face. Suppose ($\tau_{j, 1}, \cdots, \tau_{j, m_{j}}$) is the cyclic order in which l_{j} intersects the n-simplices of K^{n} having σ_{j} as a face, and suppose the intersection number of l_{j} with $\tau_{j, i}$ is $\boldsymbol{\epsilon}(j, i)$. Let R denote the smallest normal subgroup of F containing the words $\left(\prod_{i=1}^{m_{j}} \tau_{j, i}^{e(1, i)}\right), \quad j=1,2, \cdots, q$. Denote F / R by $G\left(K^{n}, M^{n+1}\right)$. We call $G\left(K^{n}, M^{n+1}\right)$ the In-Group of the imbedding $K^{n} \subset M^{n+1}$. It is also possible to define $G\left(K^{n}, M^{n+1}\right)$ as $\pi_{1}\left(M^{n+1}\right)$ modulo the smallest normal subgroup generated by the image of $\pi_{1}\left(M^{n+1}-K^{n}\right)$ in $\pi_{1}\left(M^{n+1}\right)$. The In-Group does not depend on the orientation of M^{n+1}, the orientations of the simplices of K^{n}, or subdivisions of either.

Theorem 1. If $M^{n+1}-K^{n}$ is connected there is a surjection, α, from $\pi_{1}\left(M^{n+1}\right)$ to $G\left(K^{n}, M^{n+1}\right)$.

It is not difficult to see how one may compute all the possible InGroups that a finite n-complex may have. This may be done by assuming in turn all possible distinct cyclic orderings of the n-simplices incident along each ($n-1$)-simplex. Each of these gives a candidate for an In-Group. The collection of these candidates may be called the Out-Groups of the complex.

Then as a corollary to Theorem 1 we have
Corollary 1. A necessary condition for the semi-linear imbedding of an n-complex K^{n} in a closed orientable manifold M^{n+1} so that M^{n+1} $-K^{n}$ is connected is that some Out-Group of K^{n} be a homomorph of $\pi_{1}\left(M^{n+1}\right)$.

As sample applications of this corollary we have verified the following simple statements.

