IN-GROUPS AND IMBEDDINGS OF n-COMPLEXES IN (n+1)-MANIFOLDS

BY LEE NEUWIRTH

Communicated by J. Milnor, May 20, 1964

Let K^n denote an *n*-dimensional subcomplex of a closed orientable (n+1)-manifold, M^{n+1} .

Denote the *n*-simplices of K^n by $\tau_1, \tau_2, \cdots, \tau_p$, and the (n-1)simplices of K^{n-1} by $\sigma_1, \sigma_2, \cdots, \sigma_q$. Let F denote the *free* (not free abelian) group generated by $\tau_1, \tau_2, \cdots, \tau_p$. Assume M^{n+1} , the τ_i and σ_i have been oriented. Let l_i be a nice small loop about σ_i , oriented in such a way that the orientation of l_i and σ_i taken together agrees with that of M^{n+1} . As Milnor suggests, l_i can be taken to be the link of σ_i in the star neighborhood of σ_i . l_i intersects in some cyclic order the *n*-simplices of K^n which have σ_i as a face. Suppose $(\tau_{j,1}, \cdots, \tau_{j,m_i})$ is the cyclic order in which l_j intersects the *n*-simplices of K^n having σ_i as a face, and suppose the intersection number of l_i with $\tau_{i,i}$ is $\epsilon(j, i)$. Let R denote the smallest normal subgroup of F containing words $(\prod_{i=1}^{m_j} \tau_{j,i}^{\epsilon(j,i)}), \quad j = 1, 2, \cdots, q.$ Denote F/R by the $G(K^n, M^{n+1})$. We call $G(K^n, M^{n+1})$ the In-Group of the imbedding $K^n \subset M^{n+1}$. It is also possible to define $G(K^n, M^{n+1})$ as $\pi_1(M^{n+1})$ modulo the smallest normal subgroup generated by the image of $\pi_1(M^{n+1}-K^n)$ in $\pi_1(M^{n+1})$. The In-Group does not depend on the orientation of M^{n+1} , the orientations of the simplices of K^n , or subdivisions of either.

THEOREM 1. If $M^{n+1} - K^n$ is connected there is a surjection, α , from $\pi_1(M^{n+1})$ to $G(K^n, M^{n+1})$.

It is not difficult to see how one may compute all the *possible* In-Groups that a finite *n*-complex may have. This may be done by assuming in turn all possible distinct cyclic orderings of the *n*-simplices incident along each (n-1)-simplex. Each of these gives a candidate for an In-Group. The collection of these candidates may be called the Out-Groups of the complex.

Then as a corollary to Theorem 1 we have

COROLLARY 1. A necessary condition for the semi-linear imbedding of an n-complex K^n in a closed orientable manifold M^{n+1} so that M^{n+1} $-K^n$ is connected is that some Out-Group of K^n be a homomorph of $\pi_1(M^{n+1})$.

As sample applications of this corollary we have verified the following simple statements.