NOETHERIAN SIMPLE RINGS

BY CARL FAITH

Communicated by N. Jacobson, April 20, 1964

THEOREM 1. A right noetherian simple ring R with identity is isomorphic to the endomorphism ring of a unital torsion-free module M of finite rank over an integral domain.

Since any right artinian ring with identity is right noetherian, this theorem generalizes the classical Wedderburn-Artin theorem which states that a right artinian simple ring with identity is (in the sense of isomorphism) the ring of endomorphisms of a unital module V over a (not necessarily commutative) field D.

The implications of this theorem for the structure of R are not yet apparent to the author. For instance, does it imply that R must contain a nontrivial idempotent, if R is not an integral domain?

The conclusion of Theorem 1 holds for any simple ring R with identity which satisfies the maximum conditions on annihilator right ideals and complement right ideals. According to Goldie [2] R will then have a classical right quotient ring R which is a simple artinian ring, that is, a full ring D_n of $n \times n$ matrices over a field D. Actually, we prove the theorem in the following setting.

THEOREM 2. If R is a simple ring with identity which contains a minimal complement (= closed = uniform) right ideal, then R is the endomorphism ring of a unital torsion-free module over an integral domain.

OUTLINE OF THE PROOF. By a theorem of Utumi [3], the maximal right quotient ring S of R is a full ring of l.t.'s in a right vector space over a field D. It is easily checked that there exists a primitive idempotent $e \in S$ such that $K = eSe \cap R \neq 0$. Then D = eSe is a field, V = Se is a right vector space over D, and S is naturally isomorphic to $\Omega = \operatorname{Hom}_D(V, V)$ under a map ϕ which assigns to each $s \in S$ the element $\phi(s)$ which satisfies $\phi(s)x = sx$, for all $x \in V$. Since D is the right quotient field of K (Faith and Utumi [1]), then D is the right quotient field of the subring Δ generated by K and e. Furthermore, $M = Se \cap R$ is a unital torsion-free module over Δ and it can be shown that $V = MD = \{xd^{-1} | x \in M, 0 \neq d \in \Delta\}$. Therefore any element γ in $\Gamma = \operatorname{Hom}_{\Delta}(M, M)$ has a unique extension γ' in Ω . The natural isomorphism $S \cong \Omega$ implies that Γ is isomorphic to the subring $T = \{s \in S | sM \subseteq M\}$. Since T contains R, in order to establish