THE EQUIVALENCE OF THE ANNULUS CONJECTURE AND THE SLAB CONJECTURE¹

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, May 29, 1964

In [1], the author showed that the Slab Conjecture implies the Annulus Conjecture.

The purpose of this paper is to show that the Annulus Conjecture implies the Slab Conjecture for n>3 and hence the two conjectures are equivalent for n>3.

 R^n , S^n will denote *n*-space and the *n*-sphere, respectively. A *k*-manifold N is embedded in a locally flat manner in an *n*-manifold M provided each point of N has a neighborhood U in M such that $(U, U \cap N) \approx (R^n, R^k)$.

The Annulus Conjecture. Let S_1^{n-1} , S_2^{n-1} be disjoint locally flat (n-1)-spheres embedded in S^n and let M be the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$. Then $M \approx S^{n-1} \times [0, 1]$.

The Slab Conjecture. Let R_1^{n-1} , R_2^{n-1} be disjoint locally flat n-1 spaces embedded as closed subsets of R^n and let M be the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$. Then $M \approx R^{n-1} \times [0, 1]$.

THEOREM. The Annulus Conjecture implies the Slab Conjecture for n > 3.

PROOF. Let R_1^{n-1} , R_2^{n-1} be disjoint locally flat n-1 spaces embedded as closed subsets of R^n , n>3, and let M be the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$. Let $S^n = R^n \cup \{p\}$ be the one-point compactification of R^n and $S_i^{n-1} = R_i^{n-1} \cup \{p\}$ for i=1, 2. By the corollary to Theorem 2 of [2], S_i^{n-1} is flat for i=1, 2. Hence, we may assume that $S_1^{n-1} = S^{n-1}$, that S_2^{n-1} lies in the northern hemisphere of S^n = the suspension of S^{n-1} , and that $S_1^{n-1} \cap S_2^{n-1} = \{p\}$.

Let B^{n-1} be the unit ball in $S_1^{n-1} = S^{n-1}$ with center p, r = the south pole of S^n , q = the midpoint of the line segment joining p to r in S^n , L = the line segment joining p to q in S^n , and B_r^n , $B_q^n =$ the cones (n-balls) in S^n with bases B^{n-1} and cone points r, q respectively. (See Figure 1.) Now, let $S_3^{n-1} = [S_1^{n-1} \cup \dot{B}_q^n] - \operatorname{Int}(B^{n-1})$. Then S_3^{n-1} is a flat n-1 sphere in S^n and $S_3^{n-1} \cap S_2^{n-1} = \emptyset$. By the Annulus Conjecture, $M \cup B_q^n = A^n$ is an n-annulus. We will complete the proof by showing that $M \cup \{p\}$ is homeomorphic to the decomposition space A^n/L and applying Lemma 3 of [3].

¹ This work supported in part by NSF GP-211.