THE EQUIVALENCE OF THE ANNULUS CONJECTURE AND THE SLAB CON JECTURE ${ }^{1}$

BY CHARLES GREATHOUSE
Communicated by M. L. Curtis, May 29, 1964

In [1], the author showed that the Slab Conjecture implies the Annulus Conjecture.

The purpose of this paper is to show that the Annulus Conjecture implies the Slab Conjecture for $n>3$ and hence the two conjectures are equivalent for $n>3$.
R^{n}, S^{n} will denote n-space and the n-sphere, respectively. A k manifold N is embedded in a locally flat manner in an n-manifold M provided each point of N has a neighborhood U in M such that $(U, U \cap N) \approx\left(R^{n}, R^{k}\right)$.

The Annulus Conjecture. Let S_{1}^{n-1}, S_{2}^{n-1} be disjoint locally flat ($n-1$)-spheres embedded in S^{n} and let M be the submanifold of S^{n} bounded by $S_{1}^{n-1} \cup S_{2}^{n-1}$. Then $M \approx S^{n-1} \times[0,1]$.

The Slab Conjecture. Let R_{1}^{n-1}, R_{2}^{n-1} be disjoint locally flat $n-1$ spaces embedded as closed subsets of R^{n} and let M be the submanifold of R^{n} bounded by $R_{1}^{n-1} \cup R_{2}^{n-1}$. Then $M \approx R^{n-1} \times[0,1]$.

Theorem. The Annulus Conjecture implies the Slab Conjecture for $n>3$.

Proof. Let R_{1}^{n-1}, R_{2}^{n-1} be disjoint locally flat $n-1$ spaces embedded as closed subsets of $R^{n}, n>3$, and let M be the submanifold of R^{n} bounded by $R_{1}^{n-1} \cup R_{2}^{n-1}$. Let $S^{n}=R^{n} \cup\{p\}$ be the one-point compactification of R^{n} and $S_{i}^{n-1}=R_{i}^{n-1} \cup\{p\}$ for $i=1,2$. By the corollary to Theorem 2 of [2], S_{i}^{n-1} is flat for $i=1,2$. Hence, we may assume that $S_{1}^{n-1}=S^{n-1}$, that S_{2}^{n-1} lies in the northern hemisphere of $S^{n}=$ the suspension of S^{n-1}, and that $S_{1}^{n-1} \cap S_{2}^{n-1}=\{p\}$.

Let B^{n-1} be the unit ball in $S_{1}^{n-1}=S^{n-1}$ with center $p, r=$ the south pole of $S^{n}, q=$ the midpoint of the line segment joining p to r in S^{n}, $L=$ the line segment joining p to q in S^{n}, and $B_{r}^{n}, B_{q}^{n}=$ the cones (n-balls) in S^{n} with bases B^{n-1} and cone points r, q respectively. (See Figure 1.) Now, let $S_{3}^{n-1}=\left[S_{1}^{n-1} \cup \dot{B}_{q}^{n}\right]-\operatorname{Int}\left(B^{n-1}\right)$. Then S_{3}^{n-1} is a flat $n-1$ sphere in S^{n} and $S_{3}^{n-1} \cap S_{2}^{n-1}=\varnothing$. By the Annulus Conjecture, $M \cup B_{q}^{n}=A^{n}$ is an n-annulus. We will complete the proof by showing that $M \cup\{p\}$ is homeomorphic to the decomposition space A^{n} / L and applying Lemma 3 of [3].

[^0]
[^0]: ${ }^{1}$ This work supported in part by NSF GP-211.

