TAMING CANTOR SETS IN E^n

BY D. R. MCMILLAN, JR.¹ Communicated by V. Klee, May 11, 1964

1. Introduction. Any two compact, perfect, zero-dimensional and nondegenerate metric spaces are homeomorphic. We call such a space a *Cantor set*. A Cantor set *C* in Euclidean space E^n is called *tame* if there is a homeomorphism *h* of E^n onto E^n such that $h(C) \subset E^1 \times \{0_{n-1}\}$ $= E^1 \subset E^n$. For examples of wild (i.e., nontame) Cantor sets, see [1], [4], [3], and [9]. The examples of Blankenship [3] give the existence of wild Cantor sets in E^n for each $n \ge 3$.

Homma [8] and Bing [2, Theorem 5.1] have shown that a Cantor set C in E^3 is tame if and only if $E^3 - C$ is 1-ULC (definition below). It is our purpose here to extend this useful characterization to Cantor sets in E^n $(n \neq 4)$. We assume the customary metric on E^n throughout this paper. Let K be a compact set in E^n . Then we say that $E^n - K$ is 1-ULC if for each $\epsilon > 0$ there is a $\delta > 0$ such that each loop (i.e., closed curve) of diameter less than δ in $E^n - K$ is null-homotopic in $E^n - K$ on a set of diameter less than ϵ .

We sketch the proof below, relying heavily on the *cellularity cri*terion [10, Theorems 1 and 1']. For $n \ge 5$, this criterion implies that a compact absolute retract X in the interior of a piecewise-linear (abbreviated pwl) *n*-manifold M^n is cellular with respect to piecewiselinear cells if and only if for each open set $U \subset M$ containing X there is an open set V such that $X \subset V \subset U$ and each loop in V-X is nullhomotopic in U-X.

2. The theorem. We first state some lemmas. For Lemma 1, see [11, Theorem 3], [12, Theorem 4], and [6, Theorem 3]. In White-head's theorem [12], we take K = Bd M.

LEMMA 1. Let M^n be a compact piecewise-linear n-manifold (possibly with boundary), and let E_1 and E_2 be piecewise-linear n-cells in Int M. Then there is a piecewise-linear homeomorphism $h: M \rightarrow M$ such that $h(E_1) = E_2$ and h | Bd M = the identity.

LEMMA 2. Let C be a Cantor set in E^n , $n \ge 3$. Then C is tame if for each $\epsilon > 0$ there is a finite, disjoint collection of piecewise-linear n-cells, each of diameter less than ϵ , whose interiors cover C.

The proof of Lemma 2 is essentially the same as in the three-di-

¹ Research supported by grant NSF-GP2440.