TAMING CANTOR SETS IN E^{n}

BY D. R. McMILLAN, JR. ${ }^{1}$
Communicated by V. Klee, May 11, 1964

1. Introduction. Any two compact, perfect, zero-dimensional and nondegenerate metric spaces are homeomorphic. We call such a space a Cantor set. A Cantor set C in Euclidean space E^{n} is called tame if there is a homeomorphism h of E^{n} onto E^{n} such that $h(C) \subset E^{1} \times\left\{0_{n-1}\right\}$ $=E^{1} \subset E^{n}$. For examples of wild (i.e., nontame) Cantor sets, see [1], [4], [3], and [9]. The examples of Blankenship [3] give the existence of wild Cantor sets in E^{n} for each $n \geqq 3$.

Homma [8] and Bing [2, Theorem 5.1] have shown that a Cantor set C in E^{3} is tame if and only if $E^{3}-C$ is 1 -ULC (definition below). It is our purpose here to extend this useful characterization to Cantor sets in $E^{n}(n \neq 4)$. We assume the customary metric on E^{n} throughout this paper. Let K be a compact set in E^{n}. Then we say that $E^{n}-K$ is 1 -ULC if for each $\epsilon>0$ there is a $\delta>0$ such that each loop (i.e., closed curve) of diameter less than δ in $E^{n}-K$ is null-homotopic in $E^{n}-K$ on a set of diameter less than ϵ.

We sketch the proof below, relying heavily on the cellularity criterion [10, Theorems 1 and 1^{\prime}]. For $n \geqq 5$, this criterion implies that a compact absolute retract X in the interior of a piecewise-linear (abbreviated pwl) n-manifold M^{n} is cellular with respect to piecewiselinear cells if and only if for each open set $U \subset M$ containing X there is an open set V such that $X \subset V \subset U$ and each loop in $V-X$ is nullhomotopic in $U-X$.
2. The theorem. We first state some lemmas. For Lemma 1, see [11, Theorem 3], [12, Theorem 4], and [6, Theorem 3]. In Whitehead's theorem [12], we take $K=\operatorname{Bd} M$.

Lemma 1. Let M^{n} be a compact piecewise-linear n-manifold (possibly with boundary), and let E_{1} and E_{2} be piecewise-linear n-cells in Int M. Then there is a piecewise-linear homeomorphism $h: M \rightarrow M$ such that $h\left(E_{1}\right)=E_{2}$ and $h \mid \mathrm{Bd} M=$ the identity.

Lemma 2. Let C be a Cantor set in $E^{n}, n \geqq 3$. Then C is tame if for each $\epsilon>0$ there is a finite, disjoint collection of piecewise-linear n-cells, each of diameter less than ϵ, whose interiors cover C.

The proof of Lemma 2 is essentially the same as in the three-di-

[^0]
[^0]: ${ }^{1}$ Research supported by grant NSF-GP2440.

