THE TEICHMÜLLER SPACE OF AN ARBITRARY FUCHSIAN GROUP ${ }^{1}$

BY CLIFFORD J. EARLE
Communicated by L. Bers, May 7, 1964

1. Introduction. Let U be the upper half plane. Let Σ be the set of quasiconformal self-mappings of U which leave 0,1 , and ∞ fixed. The universal Teichmüller space of Bers is the set T of mappings $h: R \rightarrow R$ which are boundary values of mappings in Σ.

Let M be the open unit ball in $L_{\infty}(U)$. For each μ in M, let f^{μ} be the unique mapping in Σ which satisfies the Beltrami equation

$$
\begin{equation*}
f_{\bar{z}}=\mu f_{z} . \tag{1}
\end{equation*}
$$

We map M onto T by sending μ to the boundary mapping of $f^{\mu} . T$ is given the quotient topology induced by the L_{∞} topology on M. The right translations, of the form $h \rightarrow h \circ h_{0}$, are homeomorphisms of T.

We shall also associate to each μ in M a function ϕ^{μ} holomorphic in the lower half plane U^{*}. For each μ, let w^{μ} be the unique quasiconformal mapping of the plane on itself which is conformal in U^{*}, satisfies (1) in U, and leaves 0,1 , and ∞ fixed. ϕ^{μ} is the Schwarzian derivative $\left\{w^{\mu}, z\right\}$ of w^{μ} in U^{*}. By Nehari [3], ϕ^{μ} belongs to the Banach space B of holomorphic functions ψ on U^{*} which satisfy

$$
\|\psi\|=\sup \left|\left(z-z^{*}\right)^{2} \psi(z)\right|<\infty .
$$

It is known [1, pp. 291-292] that $\phi^{\mu}=\phi^{\nu}$ if and only if f^{μ} and f^{ν} have the same boundary values. Hence, there is an injection $\theta: T \rightarrow B$ which sends the boundary function of f^{μ} to ϕ^{μ}. We shall write $\theta(T)=\Delta$.

Now let G be a Fuchsian group on U; that is, a discontinuous group of conformal self-mappings of U, not necessarily finitely generated. The mapping f in Σ is compatible with G if $f \circ A \circ f^{-1}$ is conformal for every A in G. The Teichmüller space $T(G)$ is the set of h in T which are boundary values of mappings compatible with G. The space $B(G)$ of quadratic differentials is the set of ϕ in B such that

$$
\phi(A z) A^{\prime}(z)^{2}=\phi(z) \quad \text { for all } A \text { in } G
$$

Ahlfors proved in [1] that Δ is open in B. Bers [2] proved that θ maps T homeomorphically on Δ and maps $T(G)$ onto an open subset of $B(G)$. These results are summed up in the following theorems:

[^0]
[^0]: ${ }^{1}$ This research was supported by the National Science Foundation grant NSFGP780.

