THE TEICHMÜLLER SPACE OF AN ARBITRARY FUCHSIAN GROUP¹

BY CLIFFORD J. EARLE

Communicated by L. Bers, May 7, 1964

1. Introduction. Let U be the upper half plane. Let Σ be the set of quasiconformal self-mappings of U which leave 0, 1, and ∞ fixed. The universal Teichmüller space of Bers is the set T of mappings $h: R \rightarrow R$ which are boundary values of mappings in Σ .

Let M be the open unit ball in $L_{\infty}(U)$. For each μ in M, let f^{μ} be the unique mapping in Σ which satisfies the Beltrami equation

$$(1) f_{\bar{z}} = \mu f_{z}.$$

We map M onto T by sending μ to the boundary mapping of f^{μ} . T is given the quotient topology induced by the L_{∞} topology on M. The right translations, of the form $h \rightarrow h \circ h_0$, are homeomorphisms of T.

We shall also associate to each μ in M a function ϕ^{μ} holomorphic in the lower half plane U^* . For each μ , let w^{μ} be the unique quasiconformal mapping of the plane on itself which is conformal in U^* , satisfies (1) in U, and leaves 0, 1, and ∞ fixed. ϕ^{μ} is the Schwarzian derivative $\{w^{\mu}, z\}$ of w^{μ} in U^* . By Nehari [3], ϕ^{μ} belongs to the Banach space B of holomorphic functions ψ on U^* which satisfy

$$||\psi|| = \sup |(z - z^*)^2 \psi(z)| < \infty.$$

It is known [1, pp. 291-292] that $\phi^{\mu} = \phi^{\nu}$ if and only if f^{μ} and f^{ν} have the same boundary values. Hence, there is an injection $\theta: T \rightarrow B$ which sends the boundary function of f^{μ} to ϕ^{μ} . We shall write $\theta(T) = \Delta$.

Now let G be a Fuchsian group on U; that is, a discontinuous group of conformal self-mappings of U, not necessarily finitely generated. The mapping f in Σ is compatible with G if $f \circ A \circ f^{-1}$ is conformal for every A in G. The Teichmüller space T(G) is the set of h in T which are boundary values of mappings compatible with G. The space B(G)of quadratic differentials is the set of ϕ in B such that

$$\phi(Az)A'(z)^2 = \phi(z)$$
 for all A in G.

Ahlfors proved in [1] that Δ is open in *B*. Bers [2] proved that θ maps *T* homeomorphically on Δ and maps T(G) onto an open subset of B(G). These results are summed up in the following theorems:

¹ This research was supported by the National Science Foundation grant NSF-GP780.