ON THE UNKNOTTEDNESS OF THE FIXED POINT SET OF DIFFERENTIABLE CIRCLE GROUP ACTIONS ON SPHERES-P. A. SMITH CONJECTURE

BY WU-YI HSIANG

Communicated by W. S. Massey, May 18, 1964

The original P. A. Smith conjecture is that there are no Z_p actions on S^3 with a knotted S^1 as fixed point set. The so-called generalized P. A. Smith conjecture is that there are no Z_p or circle group actions on S^n with a knotted S^{n-2} as fixed point set [2], [8]. Mazur [5], [6] tried to give counterexamples for the cases n=4, 5 but there are several mistakes. In this paper, we show that the P. A. Smith conjecture is true for differentiable circle group actions. According to Giffen [3], there are examples of differentiable Z_p actions on S^n , $n \ge 5$, p arbitrary, with knotted S^{n-2} as their fixed point sets.

In view of the fact that the cohomological theories for Z_p actions and circle group actions are always parallel, it becomes more interesting to find the *differences* between Z_p actions and circle group actions. We will show that the circle group actions are more regular, in a sense, than Z_p actions.

THEOREM I. Suppose given a differentiable action of S^1 on S^n , $n \neq 4$, with its fixed point set $F = S^{n-2}$, then F is necessarily unknotted. If n = 4, then $S^n - F$ has the homotopy type of a circle. Actually, except for the cases n = 4, 5, the following stronger result is true.

THEOREM I'. A differentiable action of S^1 on S^n with an (n-2)dimensional fixed point set F is orthogonal if and only if F is an (n-2)sphere.

The above theorems are just special cases of the following classification theorem. First, we give a construction.

Construction. Given a compact contractible manifold X of dimension n-1, $n \ge 5$, we may have a circle group action on the smoothed $D^2 \times X$ simply by letting $g \cdot (y, x) = (g \cdot y, x)$.

By *h*-cobordism theorem, $D^2 \times X$ is a differentiable disc. If we restrict the action to the boundary of $D^2 \times X$, we get a circle group action on S^n with its orbit space diffeomorphic to X and its fixed point set, F, diffeomorphic to ∂X .

THEOREM II. For $n \ge 5$, every differentiable circle group action on S^n with dim F=n-2 is differentiably equivalent to one and only one of the examples constructed above.