ON THE THICKNESS OF THE COMPLETE GRAPH ${ }^{1}$

BY LOWELL W. BEINEKE AND FRANK HARARY
Communicated by J. W. T. Youngs, January 22, 1964

The thickness $t\left(K_{p}\right)$ of the complete graph K_{p} with p points is the minimum number of planar subgraphs whose union is K_{p}. The purpose of this note is to outline a result which determines $t\left(K_{p}\right)$ for four of every six consecutive integers p. A complete proof of this result will be published elsewhere.

Theorem. If $p \equiv-1,0,1,2(\bmod 6)$, then

$$
\begin{equation*}
t\left(K_{p}\right)=\left[\frac{p+7}{6}\right] \tag{1}
\end{equation*}
$$

In proving this theorem, we prescribe a labelling of $n+1$ plane graphs, for any positive integer n. All the graphs contain the same $6 n+2$ points, but are constructed so that no two have a common line. Two of the points will be denoted by v and v^{\prime}, and the others as $u_{k}, v_{k}, w_{k}, u_{k}^{\prime}, v_{k}^{\prime}, w_{k}^{\prime}$ for $k=0,1, \cdots, n-1$. All but one of the graphs are of the type indicated in Figure 1, where each of the six numbered triangles in G_{k} contains $n-1$ other points and $3(n-1)$ lines so that its interior is isomorphic with graph H.

The points of the n graphs G_{k} are labelled using an $n \times n$ matrix $A=\left(a_{i j}\right)$, whose entries are residue classes modulo n, where

$$
\begin{equation*}
a_{i j}=\left((-1)^{i}\left[\frac{i}{2}\right]+(-1)^{j}\left[\frac{j}{2}\right]\right)(\bmod n) \tag{2}
\end{equation*}
$$

with $[x]$ indicating the greatest integer function as usual. We remark that one of the important properties of A is that each residue class appears exactly once in each row and each column.

The $n-1$ points inside triangle $u_{k}^{\prime} v_{k} z v_{k}^{\prime}$ of graph G_{k} are labelled using the column, say the j th, whose first entry is $a_{1 j}=k$ as follows: if $a_{i j}=h$, the ($i-1$)st point down from v_{k} is labelled v_{h} or v_{h}^{\prime} according as $\min \{i, j\}$ is odd or even. The points inside triangle $v_{k} u_{k}^{\prime} w_{k}$ are similarly labelled, using u_{h}^{\prime} and u_{h} instead of v_{h} and v_{h}^{\prime} respectively. The points inside the other triangles are also labelled analogously.

Now, in the union of these n labelled graphs G_{k}, aside from v and v^{\prime}, each point is adjacent with all but one of the other points. More-

[^0]
[^0]: ${ }^{1}$ This research was supported by National Science Foundation grant GP-207.

