ON THE THICKNESS OF THE COMPLETE GRAPH¹

BY LOWELL W. BEINEKE AND FRANK HARARY Communicated by J. W. T. Youngs, January 22, 1964

The *thickness* $t(K_p)$ of the complete graph K_p with p points is the minimum number of planar subgraphs whose union is K_p . The purpose of this note is to outline a result which determines $t(K_p)$ for four of every six consecutive integers p. A complete proof of this result will be published elsewhere.

THEOREM. If $p \equiv -1, 0, 1, 2 \pmod{6}$, then

(1)
$$t(K_p) = \left[\frac{p+7}{6}\right].$$

In proving this theorem, we prescribe a labelling of n+1 plane graphs, for any positive integer n. All the graphs contain the same 6n+2 points, but are constructed so that no two have a common line. Two of the points will be denoted by v and v', and the others as $u_k, v_k, w_k, u'_k, v'_k, w'_k$ for $k=0, 1, \dots, n-1$. All but one of the graphs are of the type indicated in Figure 1, where each of the six numbered triangles in G_k contains n-1 other points and 3(n-1) lines so that its interior is isomorphic with graph H.

The points of the *n* graphs G_k are labelled using an $n \times n$ matrix $A = (a_{ij})$, whose entries are residue classes modulo *n*, where

(2)
$$a_{ij} = \left((-1)^i \left[\frac{i}{2}\right] + (-1)^j \left[\frac{j}{2}\right]\right) \pmod{n}$$

with [x] indicating the greatest integer function as usual. We remark that one of the important properties of A is that each residue class appears exactly once in each row and each column.

The n-1 points inside triangle $u'_k v_k w'_k$ of graph G_k are labelled using the column, say the *j*th, whose first entry is $a_{1j} = k$ as follows: if $a_{ij} = h$, the (i-1)st point down from v_k is labelled v_h or v'_h according as min $\{i, j\}$ is odd or even. The points inside triangle $v_k u'_k w_k$ are similarly labelled, using u'_h and u_h instead of v_h and v'_h respectively. The points inside the other triangles are also labelled analogously.

Now, in the union of these n labelled graphs G_k , aside from v and v', each point is adjacent with all but one of the other points. More-

¹ This research was supported by National Science Foundation grant GP-207.