4. N. Jacobson, Abstract derivations and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), 206-224.
5. ——, p-Algebras of exponent p, Bull. Amer. Math. Soc. 43 (1937), 667-670.
6. -, Galois theory of purely inseparable fields of exponent one, Amer. J. Math. 46 (1944), 645-648.
7. -, Lectures in abstract algebra, Vol. III, Van Nostrand, Princeton, N. J., 1964.
8. O. Zariski and P. Samuel, Commutative algebra, Van Nostrand, Princeton, N. J., 1958.

University of Pennsylvania

A SPARSE REGULAR SEQUENCE OF EXPONENTIALS CLOSED ON LARGE SETS

BY H. J. LANDAU
Communicated by P. D. Lax, March 30, 1964

Introduction. For a given sequence $\left\{\lambda_{k}\right\}$ of complex numbers, the problem of determining those intervals I on which the exponentials $\left\{e^{i \lambda_{k} x}\right\}$ are complete in various function spaces has been extensively studied [3]. Since the problem is invariant under a translation of I, only the lengths of I are involved, and attention has focused on the relation between these lengths and the density of the sequence $\left\{\lambda_{k}\right\}$. With the function space taken to be $L^{p}(I)$ for $1 \leqq p<\infty$, or $C(I)$, the continuous functions on I, the general character of the results has been that there exist sparse real sequences (lim r^{-1} (the number of $\left.\left|\lambda_{k}\right|<r\right)=0$, for example) for which I can be arbitrarily long [2], but all such sequences are nonuniformly distributed; when a sequence is sufficiently regular, in the sense that λ_{k} is close enough to k, the length of I cannot exceed 2π [4, p. 210]. Most recently, in a complete solution which accounts for all these phenomena, Beurling and Malliavin have proved that the supremum of the lengths of I is proportional to an appropriately defined density of $\left\{\lambda_{k}\right\}[1]$.

The purpose of this note is to show that the situation is quite different when the single interval I is replaced by a union of intervals. Specifically, we will construct a real symmetric (or positive) sequence $\left\{\lambda_{k}\right\}$ arbitrarily close to the integers, for which the corresponding exponentials are complete in $C(S)$, where S is any finite union of the intervals $|x-2 n \pi|<\pi-\delta$, with integer n and $\delta>0$, and so has arbitrarily large measure. Thus, for sets S more general than intervals,

