ON THE LOCAL BEHAVIOR OF THE RATIONAL TSCHEBYSCHEFF OPERATOR

BY HELMUT WERNER
Communicated by A. S. Householder, February 10, 1964

Let l and r be non-negative integers. Denote by $\mathcal{R}_{l, r}$ the set of all rational functions where the degrees of the numerator and denominator do not exceed l and r respectively. If $R=p / q \in \mathscr{G}_{l, r}$ and p and q are relatively prime polynomials of degree ∂p and ∂q, then $d_{l, r}[R]:=\min [l-\partial p, r-\partial q]$ is called the defect of R in $\mathcal{R}_{l, r}$: the function R is called degenerate, if the defect is positive. (For these notations compare Werner (1962) [3].)

For a fixed interval $[a, b]$ let $T_{l, r}[f]$ be the Tschebyscheff Approximation of $f \in C[a, b]$ in the class $\mathcal{R}_{l, r}$ with respect to the norm $\|f\|:=\max _{[a, b]}|w(x) \cdot f(x)|$, with $w(x)$ a positive continuous weight function in $[a, b]$. We write $\eta_{l, r}[f]:=\left\|f-T_{l, r}[f]\right\|$. Those f for which $T_{l, r}[f]$ is not degenerate are called normal by Cheney and Loeb (1963) [1]. Already Maehly and Witzgall (1960) [2] proved that $T_{l, r}[f]$ furnishes a continuous map of $C[a, b]$ into itself at f with respect to the introduced norm, if f is normal. For the actual verification of normality one may use the following normality criterion:

Let $g(x)$ be normal for $T_{l, r}$. Then $f(x)$ is normal if

$$
\|f-g\|<\left(\eta_{l-1, r-1}[g]-\eta_{l, r}[g]\right) / 2 .
$$

Except for the case $r=1, l$ arbitrary (compare Werner (1963) [5]) no specific properties of f are known to insure normality of f for arbitrary $l, r .{ }^{1}$ Maehly and Witzgall (1960) [2] also gave an example that showed that $T_{l, r}[f]$ need not be continuous at f, if f is not normal. Recently Cheney and Loeb (1963) [1] made an extensive study of generalized rational approximation and proved that $T_{l, r}[f]$ is not continuous, if f is not normal and if no alternant of the error function $\eta(x):=w(x)\left(f(x)-T_{l, r}[f](x)\right)$ has $r+l+2$ points. This later restriction may be lifted and one obtains the following classification.

Theorem 1. The operator $T_{l, r}[f]$ is continuous at f if and only if f is normal or belongs to the class $\mathfrak{R}_{l, r}$.

In order to prove this, one now only has to cope with the case that the error function has an alternant of $l+r+2$ points. By a proper

[^0]
[^0]: ${ }^{1}$ Added in proof. Recently a criterion has been published by H. L. Loeb, Notices Amer. Math. Soc. 11 (1964), 335.

