ON THE LOCAL BEHAVIOR OF THE RATIONAL TSCHEBYSCHEFF OPERATOR

BY HELMUT WERNER

Communicated by A. S. Householder, February 10, 1964

Let l and r be non-negative integers. Denote by $\mathfrak{R}_{l,r}$ the set of all rational functions where the degrees of the numerator and denominator do not exceed l and r respectively. If $R = p/q \in \mathfrak{R}_{l,r}$ and pand q are relatively prime polynomials of degree ∂p and ∂q , then $d_{l,r}[R] := \min [l - \partial p, r - \partial q]$ is called the defect of R in $\mathfrak{R}_{l,r}$: the function R is called degenerate, if the defect is positive. (For these notations compare Werner (1962) [3].)

For a fixed interval [a, b] let $T_{l,r}[f]$ be the Tschebyscheff Approximation of $f \in C[a, b]$ in the class $\mathfrak{R}_{l,r}$ with respect to the norm $||f|| := \max_{[a,b]} |w(x) \cdot f(x)|$, with w(x) a positive continuous weight function in [a, b]. We write $\eta_{l,r}[f] := ||f - T_{l,r}[f]||$. Those f for which $T_{l,r}[f]$ is not degenerate are called normal by Cheney and Loeb (1963) [1]. Already Maehly and Witzgall (1960) [2] proved that $T_{l,r}[f]$ furnishes a continuous map of C[a, b] into itself at f with respect to the introduced norm, if f is normal. For the actual verification of normality one may use the following normality criterion:

Let g(x) be normal for $T_{l,r}$. Then f(x) is normal if

$$||f - g|| < (\eta_{l-1,r-1}[g] - \eta_{l,r}[g])/2.$$

Except for the case r=1, l arbitrary (compare Werner (1963) [5]) no specific properties of f are known to insure normality of f for arbitrary l, r.¹ Maehly and Witzgall (1960) [2] also gave an example that showed that $T_{l,r}[f]$ need not be continuous at f, if f is not normal. Recently Cheney and Loeb (1963) [1] made an extensive study of generalized rational approximation and proved that $T_{l,r}[f]$ is not continuous, if f is not normal and if no alternant of the error function $\eta(x) := w(x)(f(x) - T_{l,r}[f](x))$ has r+l+2 points. This later restriction may be lifted and one obtains the following classification.

THEOREM 1. The operator $T_{l,r}[f]$ is continuous at f if and only if f is normal or belongs to the class $\mathfrak{R}_{l,r}$.

In order to prove this, one now only has to cope with the case that the error function has an alternant of l+r+2 points. By a proper

¹ Added in proof. Recently a criterion has been published by H. L. Loeb, Notices Amer. Math. Soc. 11 (1964), 335.