DEMICONTINUITY, HEMICONTINUITY AND MONOTONICITY ## BY TOSIO KATO Communicated by F. Browder, March 12, 1964 Recently the notions of monotone, demicontinuous and hemicontinuous functions have been introduced in connection with nonlinear problems in functional analysis (Browder [1; 2; 3; 4; 5], Minty [6;7;8]). The object of the present note is to show that under rather general conditions, hemicontinuity is equivalent to demicontinuity for monotone functions. Let X be a (real or complex) Banach space and X^* its adjoint space as the set of all bounded conjugate-linear functionals on X. The value of $f \in X^*$ at $u \in X$ is denoted by (f, u). We use the notations \to and \to for strong convergence in X (or in X^* or in the set of real numbers) and weak* convergence in X^* , respectively. Let G be a function from X to X* with domain $D = D(G) \subset X$. G is said to be demicontinuous if $u_n \in D$, $n = 1, 2, 3, \dots, u \in D$ and $u_n \to u$ imply $Gu_n \to Gu$. G is hemicontinuous if $u \in D$, $v \in X$ and $u + t_n v \in D$, where t_n is a sequence of positive numbers such that $t_n \to 0$, imply $G(u+t_nv) \to Gu$. We shall say that G is locally bounded if $u_n \in D$, $u \in D$ and $u_n \to u$ imply that Gu_n is bounded. Obviously a demicontinuous function is hemicontinuous and locally bounded. G is said to be monotone if $Re(Gu-Gv, u-v) \ge 0$ for $u, v \in D$. These definitions may be void if D is too arbitrary. In what follows we shall assume that D is quasi-dense. By this we mean that for each $u \in D$ there is a dense subset M_u of X such that for each $v \in M_u$, $u+tv \in D$ for sufficiently small t>0 (the smallness of t depending on t). Thus any open subset of t as well as any dense linear manifold of t is quasi-dense. THEOREM 1. Let G be a monotone function from X to X^* with a quasidense domain D. Then G is demicontinuous if and only if it is hemicontinuous and locally bounded. PROOF. By the remark given above, it suffices to prove the "if" part. Suppose G is hemicontinuous and locally bounded. Let $u_n \rightarrow u$, u_n , $u \in D$. We have to show that $Gu_n \rightarrow Gu$. Obviously we may assume that $u_n \neq u$. Let M_u be the dense subset of X used in the definition of D being quasi-dense. Let $v \in M_u$ and $t_n = ||u_n - u||^{1/2}$. Then $t_n > 0$, $t_n \to 0$, $w_n = u + t_n v \in D$ for sufficiently large n and