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Introduction. The random walk generated by the distribution func
tion (d.f.), F, is the sequence Sn = Xi+ • • • +Xn, of sums of inde
pendent and .F-distributed random variables. If P\ \ Sn\ < 1, i.o.} = 1, 
F is called recurrent.1 If F is not recurrent, P{ | 5 n | —>°° } = 1 [ l ] , 
and F is called transient. This note contains a proof that there are 
recurrent distributions with arbitrarily large tails. This assertion was 
made without proof in [2], where it is shown that for convex distribu
tions, such behavior cannot take place. 

t. Comparing random walks. We shall prove the following theo
rem. 

THEOREM. If e = e(x) is defined for x^O, and e(x) —^0, as x—»oo, 
then there is a recurrent distribution f unction F, for which, for some #o, 

(1.1) 1 - F(x) = F(-x) ^ e(x), x ^ XQ. 

This result may be restated in the following way. For any d.f. G, 
there is a recurrent d.f. F, and a sample space W on which sequences 
Xn — Xn(w), Yn= Yn(w), n — lj 2, • • • , may be defined so that for 
each w(E.W, 

(1.2) | Yn(w) I < I Xn(w) I , sign Yn(w) = signX„(w), » = 1, 2, • • • , 

where Fn , n= 1, 2, • • • , are independently G-distributed, and Xn9 

n = l, 2, • • • , are independently F-distributed. Considering G tran
sient, we have 

(1.3) P{\ F i + • • • + Yn\ ->oo, | X i + • • • + Xn\ < l,i.o.} = 1 

We remark that F cannot be chosen convex. If F is (eventually) 
convex, and 1 — F(x) = F( — x) ^ 1 — G(x) =G( — x), where G is tran
sient, then F is also transient [2]. 

The idea of the proof of the theorem is to move out the mass of 
G and bunch it up, leaving large gaps, so that the remaining steps 
somehow cancel themselves out. 

2. Proof of the cancellation theorem. For symmetric F, the con
dition that F be recurrent is a tail condition [2], and may be stated 

1 i.o. or infinitely often here means for infinitely many w = l, 2, • • • . 
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