NORM DECREASING HOMOMORPHISMS OF GROUP ALGEBRAS¹

BY FREDERICK P. GREENLEAF

Communicated by G. A. Hedlund, February 10, 1964

1. Introduction. Let G be a locally compact group, let $C_0(G)$ be the Banach space of all continuous complex-valued functions on G which vanish at infinity, and let $M(G) = C_0(G)^*$. In [2] Glicksberg has identified all subgroups of the unit ball $\Sigma_{M(G)}$ in M(G) for locally compact abelian groups G, and all positive subgroups of $\Sigma_{M(G)}$ when G is a compact group. In a subsequent paper [3], he used these results to give the structure of norm decreasing homomorphisms $\phi: L^1(F) \rightarrow M(G)$ in the situations when (1) F is locally compact and G is locally compact *abelian*, or (2) F is locally compact, G is *compact*, and $\mu \ge 0 \Longrightarrow \phi(\mu) \ge 0$ for $\mu \in L^1(F)$. The results given here identify all subgroups of $\Sigma_{M(G)}$ for any locally compact group G, and give the structure of all norm decreasing homomorphisms $\phi: L^1(F) \rightarrow M(G)$ where F and G are locally compact groups. At the same time we show that every homomorphism of this type has a natural extension to a norm decreasing homomorphism $\phi: M(F) \rightarrow M(G)$.

2. Subgroups of the unit ball in M(G). The structure theorems are based on the following observations about measures in M(G). If $\mu \in M(G)$ we let $s(\mu)$ denote the support of μ and let $|\mu|$ denote the total variation of μ [1, p. 122]. The norm of $\mu \in M(G)$ is indicated by $||\mu||$.

THEOREM 1. If G is a locally compact group and if μ , $\lambda \in M(G)$ are such that $\|\mu * \lambda\| = \|\mu\| \cdot \|\lambda\|$, then

(1)
$$s(\mu * \lambda) = (s(\mu)s(\lambda))^{-}$$
,

(2)
$$|\mu * \lambda| = |\mu| * |\lambda|$$
.

In Glicksberg [2], similar results are proved in limited situations: (1) is proved for positive measures, and (2) is proved for measures in a subgroup of $\Sigma_{M(G)}$ when G is compact.

If K is a compact subgroup of a locally compact group G, we denote normalized Haar measure on K as m_K . If K^{\uparrow} is the collection of continuous unimodular multiplicative functions on K and if $\rho \in K^{\uparrow}$, then the measure ρm_K is defined such that $\int_G \psi d\rho m_K = \int_K \psi \cdot \rho dm_K$ for $\psi \in C_0(G)$.

 $^{^{\}rm 1}$ This research was partially supported by Air Force Office of Scientific Research Grant No. AFOSR-407-63.