Bibliography

1. J. Barta, Sulla risoluzione del problema di Dirichlet per il cerchio o per la sfera, Atti Acad. Naz. Lincei Mem. (6) 6 (1937), 783-793.
2. - Bornes pour la solution du problème de Dirichlet, Bull. Soc. Roy. Sci. Liège 31 (1962), 15-21.
3. - Sur une certaine formule qui exprime des bornes pour la solution du problème de Dirichlet, Bull. Soc. Roy. Sci. Liège 31 (1962), 760-766.
4. W. H. Malmheden, Eine neue Lösung des Dirichletschen Problems für sphärische Bereiche, Kungl. Fysiogr. Sällsk. i Lund Förh. 4 (1934), no. 17, 1-5.
5. R. J. Duffin, A note on Poisson's integral, Quart. Appl. Math. 15 (1957), 109111.

University of Minnesota

A NOTE ON THE FUNDAMENTAL THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

BY GEORGE R. SELL ${ }^{1}$
Communicated by H. Antosiewicz, February 19, 1964

In this note we present some results on various problems connected with ordinary differential equations which do not necessarily satisfy a uniqueness condition. Using the concept of an integral funnel we are able to generalize the classical theorem on continuity with respect to initial conditions. This then leads to a reformulation of the problem of classifying the solutions of a given differential equation. That is, it is shown that every continuous vector field $f(x)$ on W gives rise to a bicontinuous injection of W into a space of functions H, and consequently the problem of classifying solutions is equivalent to the problem of characterizing this family of bicontinuous injections. A detailed discussion, with proofs, will appear later.

1. Introduction. Let us consider the differential equation

$$
\begin{equation*}
x^{\prime}=f(x) \tag{1}
\end{equation*}
$$

where f is defined and continuous on some open, connected set W in R^{n}, real n-space. We shall let $W^{*}=W \cup\{\omega\}$ denote the one-point compactification of W. There is then at least one solution $\phi(p, t)$ of (1) through every point $p \in W$ with $\phi(p, 0)=p$. Moreover, every solution is defined on some maximal interval J_{p} where either $J_{p}=R^{1}$ or $\phi(p, t) \rightarrow\{\omega\}$ as $t \rightarrow b d y J_{p}$. It should be noted that since the solutions of (1) may not be unique, the interval J_{p} depends not only on p

[^0]
[^0]: ${ }^{1}$ The research on this paper was supported in part by a grant from the U. S. Army Research Office (Durham).

