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In this note we present some results on various problems connected 
with ordinary differential equations which do not necessarily satisfy 
a uniqueness condition. Using the concept of an integral funnel we 
are able to generalize the classical theorem on continuity with respect 
to initial conditions. This then leads to a reformulation of the prob­
lem of classifying the solutions of a given differential equation. That 
is, it is shown that every continuous vector field f(x) on W gives rise 
to a bicontinuous injection of W into a space of functions H, and 
consequently the problem of classifying solutions is equivalent to the 
problem of characterizing this family of bicontinuous injections. A 
detailed discussion, with proofs, will appear later. 

1. Introduction. Let us consider the differential equation 

(1) * ' = ƒ ( * ) 

where ƒ is defined and continuous on some open, connected set W in 
Rn, real w-space. We shall let PF*= "FFWJco} denote the one-point 
compactification of W. There is then at least one solution <£(£, /) of 
(1) through every point p(E.W with 4>(p, 0)=p. Moreover, every 
solution is defined on some maximal interval Jp where either Jp = R1 

or <j>(p, t)—>{co} as t—^bdy Jp. I t should be noted that since the solu­
tions of (1) may not be unique, the interval Jp depends not only on p 
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