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It is well known [1], [4] that Poisson’s formula for the value at the
origin O of a function which is harmonic inside a circle (x—xo)?
+(y—v0)2=A2 can be written in the form
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where r=R(#) is the polar equation of the boundary. Thus the value
of a harmonic function at any point in a circle is an average of the
values obtained by linear interpolation of the boundary values at the
ends of each chord through the point.
In particular, it follows that

R(® + m)u(R(6), 6) + R(O)u(R@O + =), 0 + =)
X .
R®) + R(0 + )
It is tempting to conjecture that a similar inequality holds for har-
monic functions in any convex or even star-shaped domain. Recently

J. Barta [2], [3] has given two incomplete proofs of this conjecture.
We shall show that in general no inequality of the form
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can hold for all harmonic functions in a star-shaped domain r < R().

In fact, an inequality of the form (1) holds for each point O of a con-

vex domain D only if D is the interior of a circle.
We first prove:
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LeEMMA. Let G be the Green's function with singularity at O for the
two-dimensional domain D:r <R(8). An inequality of the form (1) holds
for all harmonic functions u if and only if the identity
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