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1. A number of papers discussing the spectral decomposition and 
eigenfunction expansion for partial differential operators appeared in 
the last few years. Browder [ l ] , [2], [3], [4], Gârding [5] and Maut-
ner [12 ] proved the existence of an abstract eigenfunction expansion 
for elliptic partial differential operators. In 1953 A. Ya. Povzner [13] 
considered the detailed spectral decomposition of — A-\-q(x). This was 
completed by T. Ikebe [6] who used the theory of wave operators 
as developed by Kato [8] and Kuroda [10], [ l l ] . 

In this note we investigate an eigenfunction expansion for the 
operator P(D)+q(x) where P(D) is a linear homogeneous elliptic 
partial differential operator with constant coefficients. Detailed proofs 
of the results will appear elsewhere. 

2. The Euclidean w-space will be denoted by Rn or Mn with ele
ments x=(xu • - • , xn) or k=(ki> • • • , kn) respectively. ff(x)dx de
notes integration with respect to Lebesgue measure. We set 

d 
— Dj = for 1 ^ j S n-

idxj 

Let P(x) be a homogeneous elliptic polynomial, i.e. P ( x ) j â q x | 2 p 

where 2p is the order of P(x). Then P(D) =P(Dh • • • , Dn) is a linear 
homogeneous elliptic partial differential operator. All through this 
note we assume that 4p>n. I t is well known that P(D) can be ex
tended to a selfadjoint operator P(D) in Lz(Rn). Let g(x)GC2[„/2] 
with q{x) — 0{\x\~n~h) for some h>0. Then by Theorem 1 of [ l l ] , 
P(D)+q(x) is a selfadjoint operator in L<i(Rn). Let {Et} andjP*}, 
— oo<£< + oo,be the resolutions of the identity for P(D) and P(D) 
+q(x) respectively. Define 
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