RESEARCH PROBLEMS

6. E. T. Parker: Finite combinatorial set theory.

Let a, b, c be positive integers, $a>b>c$. Given a set S of a elements and a class K of n distinct subsets of b elements each from S, there must exist three distinct sets in K having at least c elements in common, provided n is sufficiently large. Develop upper and lower bounds on $n(a, b, c)$. (The three sets can of course be generalized to $t>1$.) (Received January 30, 1964.)
7. G. B. Dantzig: Eight unsolved problems from mathematical programming.
a. Let C_{n} be an n-dimensional bounded polyhedral convex set defined by $2 n$ distinct faces, n of which determine the extreme point p_{1} and the remaining n of which determine the extreme point p_{2}. Does there always exist a chain of edges joining p_{1} to p_{2} such that the number of edges in the chain is n ?
b. Let E be the extreme points of a unit n-cube having as faces the coordinate hyperplanes through the origin and the hyperplanes parallel to them passing through the point $(1,1, \cdots, 1)$. Let P be a given hyperplane which separates E into two parts E_{1} and E_{2}. Characterize the $n-1$ dimensional faces of the convex set having E_{1} as its complete set of extreme points.
c. A matrix such that the determinant of every square submatrix has value $-1,0$, or +1 is called unimodular. The distinct columns of such a matrix are said to form a complete set if the annexation of a column not in the set destroys the unimodular property. Two such sets belong to the same class if one can be obtained from the other by a permutation of the rows of its matrix. Characterize the various classes. How can they be generated? Given a matrix, find necessary and sufficient conditions that it satisfy the unimodular property.
d. Given an $n \times n$ permutation matrix $\left[x_{i j}\right]$, i.e., a zero-one matrix each row and column of which have exactly one unit element. Let the set of its n^{2} elements constitute a point in n^{2}-dimensional coordinate space. It is known that these and only these points are extreme points of the convex set defined by

$$
\begin{array}{ll}
\sum_{i=1}^{n} x_{i j}=1, & j=1,2, \cdots, n, \\
\sum_{j=1}^{n} x_{i j}=1, & i=1,2, \cdots, n,
\end{array}
$$

