HARMONIC ANALYSIS AND THE THEORY OF COCHAINS

VICTOR L. SHAPIRO ${ }^{1}$

1. Let E^{2} represent the plane endowed with the usual Cartesian coordinate system, and let R be an open set contained in E^{2}. We say that X is a 1 -cochain defined in R (see [7, p. 5]) if (a) $X(\sigma)$ is a real number for every 1 -simplex σ (i.e., oriented line segment) contained in R, (b) $X(-\sigma)=-X(\sigma)$ for every 1 -simplex σ contained in R, (c) $X(\sigma)=X\left(\sigma_{1}\right)+\cdots+X\left(\sigma_{n}\right)$ for $\sigma=\sigma_{1}+\cdots+\sigma_{n}$ with $\sigma, \sigma_{1}, \cdots$, σ_{n} collinear, similarly oriented, and contained in $R . X$ is then extended by linearity to all chains in R; so in particular if τ is a 2simplex (i.e., oriented triangle), $X(\partial \tau)$ is defined.

We shall call the 1 -cochain X a local $L^{1} 1$-cochain in R if the following two conditions are met:
(1) there exist two non-negative functions $g_{1}(x)$ and $g_{2}(y)$, each locally in L^{1} on R such that
(α) if σ is a 1 -simplex in R parallel to and oriented like the x-axis, $|X(\sigma)| \leqq \int_{\sigma} g_{1}(x) d x$,
(β) if σ is a 1 -simplex in R parallel to and oriented like the y-axis, $|X(\sigma)| \leqq \int_{\sigma} g_{2}(y) d y ;$
(2) there exists a non-negative function $H(x, y)$ locally in L^{1} on R such that if τ is a 2 -simplex oriented like E^{2} with two edges parallel to the x and y-axes and τ is in R, then

$$
|X(\partial \tau)| \leqq \int_{\tau} H(x, y) d x d y .
$$

Let Q be a measurable set contained in R with the property that $|R-Q|_{2}=0$ (where $\mid{ }_{j}$ represents j-dimensional Lebesgue measure). Using the notation of [7, p. 262], we say that the 1 -simplex σ in R is Q-good if $|\sigma-(\sigma \cap Q)|_{1}=0$. We say that a 2 -simplex τ contained in R is Q-excellent if each of the 1 -simplices in $\partial \tau$ are Q-good.

We shall call the differential form $\omega(x, y)=a(x, y) d x+b(x, y) d y$ a local L^{1} differential 1 -form in R if the following three conditions are met:
(3) $a(x, y)$ and $b(x, y)$ are measurable functions in R;
(4) there exists a measurable set $Q \subset R$ with $|R-Q|_{2}=0$ and two

[^0]
[^0]: An address delivered before the Los Angeles meeting of the Society on November 17, 1962, by invitation of the Committee to Select Hour Speakers for Far Western Sectional Meetings; received by the editors January 23, 1964.
 ${ }^{1}$ This work was supported by the Air Force Office of Scientific Research.

