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(iii) There is no sequence Piv • •, Pih3Pik==Piv and Wp{jr^Wpïj+1 

9*0 for l ^ j ^ i f e - 1 . 

Let a) be the number of P's whose stable manifold is of dimension 
i+j. Then the numbers 

Mq = ]C Z ( . ) a*+i and £fl = dim H«(M; F), 

satisfy the Morse inequalities. 
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1. Introduction. Let G be a cyclic group of order p2, p %. prime, 
and let U be its unique proper subgroup. If A is any G-module, then 
the four cohomology groups 

H°(G,A) H\G,A) H«(U,A) Hl(U, A) 

determine all the cohomology groups of A with respect to G and to U. 
We have determined what values this ordered set of four groups 
takes on as A runs through all finitely generated G-modules. 

2. Methods of proof. First we show that every finitely generated 
G-module has the same cohomology as some finitely generated R-
torsion free i£G-module, where R is the ring of £-adic integers. Be-


