CLASSIFICATION OF OPERATORS BY MEANS OF THE OPERATIONAL CALCULUS¹

BY SHMUEL KANTOROVITZ

Communicated by Felix Browder, November 27, 1963

1. Introduction. Let $A = A(\Delta)$ be a topological algebra of complex valued functions defined on a subset Δ of the complex plane, with the usual operations. Suppose that A contains the restrictions to Δ of polynomials. Let B(X) be the Banach algebra of all bounded linear operators on the Banach space X into itself. We say that an operator T is of class A (notation: $T \in (A)$) if there exists a continuous representation $f \rightarrow T(f)$ of A into B(X) such that T(1) = I and T(z) = T. Such a representation is called an A-operational calculus for T. A class (A) may be as wide as B(X) (if A consists of all entire functions with the topology of uniform convergence on every compact), or as narrow as the class of hermitian operators with spectrum in a given compact Δ (if $A = C(\Delta)$, $T(\cdot)$ is norm decreasing, and X is a Hilbert space). Related approaches are found in [3; 5].

2. Restrictions on A. Let $H(\Delta)$ denote the algebra of all complex valued functions which are locally holomorphic in a neighborhood of Δ , with the usual topology.

CONDITION 1. If $f \in H(\Omega)$ for a compact $\Omega \neq \emptyset$, then there exists $f_0 \in \mathbf{A}(\Delta)$ such that $f_0 = f$ on $\Delta \cap \Omega_0$, for some neighborhood Ω_0 of Ω .

This condition excludes in particular the noninteresting case $A(\Delta) = H(\Delta)$. We shall consider here only $\Delta = \mathbf{R}$ (the real line) or $\Delta = \mathbf{C}$ (the complex plane), and assume that $A_0 = \{f \in \mathbf{A} | f \text{ has compact support}\}$ is dense in \mathbf{A} .

Fix $f \in A_0$. If $g \in H(\operatorname{Spt} f)$, Condition 1 implies the existence of $g_0 \in \mathbf{A}$ such that $g_0 = g$ on $\operatorname{Spt} f$. The map $M_f: H(\operatorname{Spt} f) \to \mathbf{A}$ given by $M_fg = fg_0$ is well defined.

CONDITION 2. The map $M_f: H(\operatorname{Spt} f) \to \mathbf{A}$ is continuous, for each $f \in \mathbf{A}_0$. A topological algebra \mathbf{A} as in §1 which satisfies also Conditions 1 and 2 is called a *basic algebra* (compare [5]). Example: C^n for $0 \leq n \leq \infty$.

3. Restrictions on $T(\cdot)$.

CONDITION 3. $T(\cdot)$ has compact support (denoted by Σ). If $g \in H(\Sigma)$ and $g_0 \in \mathbf{A}$ is such that $g_0 = g$ in a neighborhood of Σ (cf. Condition 1),

 $^{^{\}rm 1}$ Research partly supported by NSF Grant No. NSF-GP780.