CLASSIFICATION OF OPERATORS BY MEANS OF THE OPERATIONAL CALCULUS ${ }^{1}$

BY SHMUEL KANTOROVITZ
Communicated by Felix Browder, November 27, 1963

1. Introduction. Let $\boldsymbol{A}=\boldsymbol{A}(\Delta)$ be a topological algebra of complex valued functions defined on a subset Δ of the complex plane, with the usual operations. Suppose that A contains the restrictions to Δ of polynomials. Let $B(X)$ be the Banach algebra of all bounded linear operators on the Banach space X into itself. We say that an operator T is of class \boldsymbol{A} (notation: $T \in(\boldsymbol{A})$) if there exists a continuous representation $f \rightarrow T(f)$ of \boldsymbol{A} into $B(X)$ such that $T(1)=I$ and $T(z)=T$. Such a representation is called an A-operational calculus for T. A class (\boldsymbol{A}) may be as wide as $B(X)$ (if \boldsymbol{A} consists of all entire functions with the topology of uniform convergence on every compact), or as narrow as the class of hermitian operators with spectrum in a given compact Δ (if $A=C(\Delta), T(\cdot)$ is norm decreasing, and X is a Hilbert space). Related approaches are found in [3;5].
2. Restrictions on \boldsymbol{A}. Let $H(\Delta)$ denote the algebra of all complex valued functions which are locally holomorphic in a neighborhood of Δ, with the usual topology.

Condition 1. If $f \in H(\Omega)$ for a compact $\Omega \neq \varnothing$, then there exists $f_{0} \in \boldsymbol{A}(\Delta)$ such that $f_{0}=f$ on $\Delta \cap \Omega_{0}$, for some neighborhood Ω_{0} of Ω.

This condition excludes in particular the noninteresting case $A(\Delta)=H(\Delta)$. We shall consider here only $\Delta=R$ (the real line) or $\Delta=\boldsymbol{C}$ (the complex plane), and assume that $\boldsymbol{A}_{0}=\{f \in \boldsymbol{A} \mid f$ has compact support $\}$ is dense in \boldsymbol{A}.

Fix $f \in \boldsymbol{A}_{0}$. If $g \in H(\operatorname{Spt} f)$, Condition 1 implies the existence of $g_{0} \in \boldsymbol{A}$ such that $g_{0}=g$ on $\operatorname{Spt} f$. The map $M_{f}: H(\operatorname{Spt} f) \rightarrow \boldsymbol{A}$ given by $M_{f} g=f g_{0}$ is well defined.

Condition 2. The map $M_{f}: H(\operatorname{Spt} f) \rightarrow \boldsymbol{A}$ is continuous, for each $f \in \boldsymbol{A}_{0}$. A topological algebra \boldsymbol{A} as in $\S 1$ which satisfies also Conditions 1 and 2 is called a basic algebra (compare [5]). Example: C^{n} for $0 \leqq n \leqq \infty$.
3. Restrictions on $T(\cdot)$.

Condition 3. $T(\cdot)$ has compact support (denoted by Σ). If $g \in H(\Sigma)$ and $g_{0} \in \boldsymbol{A}$ is such that $g_{0}=g$ in a neighborhood of Σ (cf. Condition 1),

[^0]
[^0]: ${ }^{1}$ Research partly supported by NSF Grant No. NSF-GP780.

