A PROBLEM IN PARTITIONS RELATED TO THE STIRLING NUMBERS

BY L. CARLITZ

Communicated by P. T. Bateman, October 25, 1963
Let

$$
S(n, r)=\frac{1}{r!} \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} s^{n}
$$

denote the Stirling number of the second kind and put

$$
A_{n}(x)=\sum_{r=0}^{n} S(n, r) x^{r}
$$

In a recent paper [1] the writer has determined the factorization $(\bmod 2)$ of the polynomial $A_{n}(x)$.

Put

$$
c_{n r}=S(n+1, r+1)
$$

then we have

$$
\begin{aligned}
c_{n, 2 r} & \equiv\binom{n-r}{r}(\bmod 2) \quad(0 \leqq 2 r<n), \\
c_{n, 2 r+1} & \equiv\binom{n-r-1}{r}(\bmod 2) \quad(2 r+1 \leqq n) .
\end{aligned}
$$

For fixed n, let $\theta_{0}(n)$ denote the number of odd $c_{n, 2 r}$ and $\theta_{1}(n)$ the number of even $c_{n, 2 r}$. Then

$$
\theta_{0}(2 n+1)=\theta_{0}(n), \quad \theta_{0}(2 n)=\theta_{0}(n)+\theta_{0}(n-1)
$$

and

$$
\theta_{1}(n+1)=\theta_{0}(n)
$$

Moreover we have the generating function

$$
\sum_{n=0}^{\infty} \theta_{0}(n) x^{n}=\prod_{n=0}^{\infty}\left(1+x^{2^{n}}+x^{2^{n+1}}\right)
$$

It follows that $\theta_{0}(n)$ can also be defined as the number of partitions

$$
n=n_{0}+n_{1} \cdot 2+n_{2} \cdot 2^{2}+\cdots \quad\left(0 \leqq n_{j} \leqq 2\right)
$$

subject to the conditions

