AN OBSTRUCTION TO FINITENESS OF CW-COMPLEXES

BY C. T. C. WALL

Communicated by W. S. Massey, November 4, 1963

A cell structure is a convenient means of describing a space; thus it is important to reduce such a structure to a simpler one when possible. For example, it remains unsolved whether a compact topological manifold (or more generally, ANR) has the homotopy type of a finite CW-complex. According to Milnor [2], this would follow from the conjecture that any CW-complex which is dominated by a finite complex has the homotopy type of a finite complex, but we show below that this is false.

Let X be a connected CW-complex, with universal cover \bar{X} , and fundamental group π with (integral) group ring Λ . Consider the following conditions:

(i) X is dominated by a complex of finite type (i.e., one with a finite number of cells of each dimension),

(ii) π and all $H_i(\tilde{X})$ are countable,

(iii)_N For N < i, $H_i(\tilde{X}) = 0$ and $H^i(X; \mathfrak{B}) = 0$ for all coefficient bundles \mathfrak{B} (in the sense of Steenrod; generalised to non-abelian coefficients if i=2).

Our results are as follows:

(A) If (i) holds, X is homotopy equivalent to a complex of finite type.

(B) If Λ is noetherian, (i) is equivalent to: π is finitely presented, and all $H_i(\tilde{X})$ are finitely generated Λ -modules.

(C) If X is dominated by a countable complex, it is homotopy equivalent to one; this condition is equivalent to (ii).

(E) If (iii)_N holds, and $N \neq 2$, X has the homotopy type of an N-dimensional complex, countable if (ii) holds.

(F) X is dominated by a finite complex if and only if (i) and some (iii)_N hold. When this is the case, and $N \ge 2$, there is an obstruction $\theta(X)$ in the projective class group $\tilde{K}^0(\Lambda)$, which depends only on the homotopy type of X, and is zero for X finite. If $\theta(X) = 0$, X has the homotopy type of a finite complex of dimension max(3, N). For $N \ge 2$, any finite complex K of dimension N, and $\alpha \in \tilde{K}^0(\pi_1(K))$, there is a complex X, with the (N-1)-type of K, satisfying (i) and (iii)_N, and with $\theta(X) = \alpha$.

The proofs are mostly by induction; we obtain complexes K^r and *r*-connected maps $\phi: K \to X$, where K is finite in (A), countable in (C). We then prove that $\pi_{r+1}(\phi)$ is finitely generated (over Λ) in (A),