
LACUNARY TAYLOR AND FOURIER SERIES 

J.-P. KAHANE1 

To the memory of Jacques Hadamard 

Introduction. The history of lacunary Fourier and Taylor series 
goes back to Weierstrass and Hadamard, if not to Riemann. 

According to Weierstrass [49], Riemann told his students in 1861 
that the continuous function 
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is nowhere differentiable. As Weierstrass was not able to prove it 
(and, in fact, until now, it seems to have been neither proved nor 
disproved), he gave (1872) his famous example 
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where X is an odd integer à 3, and a a positive number such that a < 1 
and aX>l+37r /2 : (2) is a continuous function which is nowhere 
differentiable [49]. Later on, Weierstrass's result was improved by 
Hardy: the previous statement holds under the assumption a X ^ l 
instead of #X>l+37r /2 [12]. In Hardy's version, that is a rather 
hard theorem ; as we shall see later, it can be made very easy. 

Hadamard (1892) proved that the Taylor series 
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has | z| = 1 as a natural boundary, whenever there exists a q> 1 such 
that 

(4) ^ ± i > g > i ( n - 1 , 2 , . . . ) [11, p. 116]. 
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(4) is known as Hadamard's lacunarity condition. We shall see that 
Hadamard's condition has played quite an important part in many 
directions. However, it is not what is needed about {Xw} to get that 
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