ON THE LIFTING PROPERTY. III ${ }^{1}$

BY A. IONESCU TULCEA AND C. IONESCU TULCEA
Communicated by Walter Rudin, September 9, 1963

1. Let Z be a locally compact space and $\mu \neq 0$ a positive Radon measure on Z. Let $M_{R}^{\infty}(Z, \mu)$ be the Banach algebra of all bounded real-valued μ-measurable functions defined on Z, endowed with the $\operatorname{norm} f \rightarrow\|f\|_{\infty}=\sup _{z \in Z}|f(z)|$. Let $C_{R}^{\infty}(Z)$ be the subalgebra of $M_{R}^{\infty}(Z, \mu)$ consisting of all bounded continuous functions on Z and $\mathcal{K}(Z)$ the subalgebra of all $f \in C_{R}^{\infty}(Z)$ having compact support. For two functions f and g defined on Z we shall write $f \equiv g$ whenever f and g coincide locally almost everywhere.

Let now $T: f \rightarrow T_{f}$ be a mapping of $M_{R}^{\infty}(Z, \mu)$ into $M_{R}^{\infty}(Z, \mu)$. Properties of T such as those listed below will be considered in what follows:
(I) $T_{f} \equiv f$;
(II) $f \equiv g$ implies $T_{f}=T_{g}$;
(III) $T_{1}=1$;
(IV) $f \geqq 0$ implies $T_{f} \geqq 0$;
(V) $T_{\alpha f+\beta g}=\alpha T_{f}+\beta T_{g}$;
(VI) $T_{f g}=T_{f} T_{g}$;
(VII) $T_{f}=f$ if $f \in C_{R}^{\infty}(Z)$.

A mapping $T: f \rightarrow T_{f}$ of $M_{R}^{\infty}(Z, \mu)$ into $M_{R}^{\infty}(Z, \mu)$ satisfying (I)-(V) will be called a linear lifting of $M_{R}^{\infty}(Z, \mu)$; if the condition (VI) is also verified the mapping will be called a lifting of $M_{R}^{\infty}(Z, \mu)$. A strong linear lifting [strong lifting] of $M_{R}^{\infty}(Z, \mu)$ is a linear lifting [lifting] which verifies also (VII).

If $T: f \rightarrow T_{f}$ is a lifting of $M_{R}^{\infty}(Z, \mu)$ and A is a μ-measurable set then we shall denote by $\rho_{T}(A)$ the set defined by the equation ${ }^{2}$ $T_{\phi_{A}}=\phi_{\rho_{T}(A)}$. For each $z \in Z$ denote by $V_{T}(z)$ the set of all parts $\rho_{T}(V)$ where V belongs to ${ }^{3} V(z)$ and is μ-measurable. If τ_{T} is the set of all parts $\rho_{T}(A)-N$ where A is μ-measurable and N is locally μ negligible then τ_{T} is a topology on Z (this result is essentially due to J. Oxtoby and has been given by him in a lecture at Yale in the fall of 1960).

Theorem 1. Let $T: f \rightarrow T_{f}$ be a lifting of $M_{R}^{\infty}(Z, \mu)$. Then the following assertions are equivalent: (1.1) T is a strong lifting; (1.2) There is

[^0]
[^0]: ${ }^{1}$ Research supported by the U. S. Army Research Office (Durham) under contract DA-ARO(D)-31-124-G218.
 ${ }^{2}$ For $X \subset Z, \phi_{X}$ denotes the characteristic function of X.
 ${ }^{3}$ For each $z \in Z, \mathcal{V}(z)$ denotes the set of all neighborhoods of z.

