DUALITY THEOREMS FOR CONVEX FUNCTIONS

BY R. T. ROCKAFELLAR ${ }^{1}$
Communicated by A. M. Gleason, September 19, 1963

Let F be a finite-dimensional real vector space. A proper convex function on F is an everywhere-defined function f such that $-\infty<f(x)$ for all $x, f(x)<\infty$ for at least one x, and

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leqq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for all x_{1} and x_{2} when $0<\lambda<1$. Its effective domain is the convex set $\operatorname{dom} f=\{x \mid f(x)<\infty\}$. Its conjugate $[2 ; 3 ; 6 ; 7]$ is the function f^{*} defined by

$$
\begin{equation*}
f^{*}\left(x^{*}\right)=\sup \left\{\left(x, x^{*}\right)-f(x) \mid x \in F\right\} \quad \text { for each } x^{*} \in F^{*}, \tag{1}
\end{equation*}
$$

where F^{*} is the space of linear functionals on F. The conjugate function is proper convex on F^{*}, and is always lower semi-continuous. If f itself is l.s.c., then f coincides with the conjugate $f^{* *}$ of f^{*} (where $F^{* *}$ is identified with F). These facts and definitions have obvious analogs for concave functions, with "inf" replacing "sup" in (1).

Suppose f is l.s.c. proper convex on F and g is u.s.c. proper concave on F. If

$$
\text { ri }(\operatorname{dom} f) \cap \operatorname{ri}(\operatorname{dom} g) \neq \varnothing
$$

where ri C denotes the relative interior of a convex set C, then

$$
\inf \{f(x)-g(x) \mid x \in F\}=\max \left\{g^{*}\left(x^{*}\right)-f^{*}\left(x^{*}\right) \mid x^{*} \in F^{*}\right\}
$$

This was proved by Fenchel [3, p. 108] (reproduced in [5, p. 228]). The purpose of this note is to announce the following more general fact.

Theorem 1. Let F and G be finite-dimensional partially-ordered real vector spaces in which the nonnegative cones $P(F)$ and $P(G)$ are polyhedral. Let A be a linear transformation from F to G. Let f be a proper convex function on F and let g be a proper concave function on G. If there exists at least one $x \in \operatorname{ri}(\operatorname{dom} f)$ such that $x \geqq 0$ and $A x \geqq y$ for some $y \in \operatorname{ri}(\operatorname{dom} g)$, then

$$
\inf \begin{align*}
\{f(x)-g(y) \mid x & \geqq 0, A x \geqq y\} \tag{2}\\
& =\max \left\{g^{*}\left(y^{*}\right)-f^{*}\left(x^{*}\right) \mid y^{*} \geqq 0, A^{*} y^{*} \leqq x^{*}\right\},
\end{align*}
$$

where A^{*} is the adjoint of A.

[^0]
[^0]: ${ }^{1}$ The material in this note stems from the author's recent doctoral dissertation at Harvard. Support was provided under grant AF-AFOSR-62-348 at the Computation Center, Massachusetts Institute of Technology.

