DUALITY THEOREMS FOR CONVEX FUNCTIONS

BY R. T. ROCKAFELLAR¹

Communicated by A. M. Gleason, September 19, 1963

Let F be a finite-dimensional real vector space. A proper convex function on F is an everywhere-defined function f such that $-\infty < f(x)$ for all $x, f(x) < \infty$ for at least one x, and

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

for all x_1 and x_2 when $0 < \lambda < 1$. Its *effective domain* is the convex set dom $f = \{x | f(x) < \infty\}$. Its *conjugate* [2; 3; 6; 7] is the function f^* defined by

(1)
$$f^*(x^*) = \sup\{(x, x^*) - f(x) | x \in F\}$$
 for each $x^* \in F^*$,

where F^* is the space of linear functionals on F. The conjugate function is proper convex on F^* , and is always lower semi-continuous. If f itself is l.s.c., then f coincides with the conjugate f^{**} of f^* (where F^{**} is identified with F). These facts and definitions have obvious analogs for concave functions, with "inf" replacing "sup" in (1).

Suppose f is l.s.c. proper convex on F and g is u.s.c. proper concave on F. If

ri
$$(\operatorname{dom} f) \cap$$
 ri $(\operatorname{dom} g) \neq \emptyset$,

where ri C denotes the relative interior of a convex set C, then

$$\inf\{f(x) - g(x) \mid x \in F\} = \max\{g^*(x^*) - f^*(x^*) \mid x^* \in F^*\}.$$

This was proved by Fenchel [3, p. 108] (reproduced in [5, p. 228]). The purpose of this note is to announce the following more general fact.

THEOREM 1. Let F and G be finite-dimensional partially-ordered real vector spaces in which the nonnegative cones P(F) and P(G) are polyhedral. Let A be a linear transformation from F to G. Let f be a proper convex function on F and let g be a proper concave function on G. If there exists at least one $x \in ri(dom f)$ such that $x \ge 0$ and $Ax \ge y$ for some $y \in ri(dom g)$, then

(2)
$$\inf \{f(x) - g(y) \mid x \ge 0, Ax \ge y\} = \max \{g^*(y^*) - f^*(x^*) \mid y^* \ge 0, A^*y^* \le x^*\},\$$

where A^* is the adjoint of A.

¹ The material in this note stems from the author's recent doctoral dissertation at Harvard. Support was provided under grant AF-AFOSR-62-348 at the Computation Center, Massachusetts Institute of Technology.