DEFORMATIONS OF RIEMANNIAN STRUCTURES

BY K. SRINIVASACHARYULU
Communicated by Raoul Bott, September 17, 1963

It has been shown in [1] that a Kählerian deformation of an irreducible compact Hermitian symmetric space V is again symmetric and is isomorphic to it. The aim of this note is to prove this for any compact Hermitian symmetric space, irreducible or not. We first prove the following Theorem 1 which is a slight generalization ${ }^{1}$ of Theorem 2 in [1].

Theorem 1. Let V and B be two differentiable manifolds and let $R(t)$ be a riemannian structure on V which depends in a differentiable way on $t \in B$; let F be any compact riemannian manifold. Then the set of points $t \in B$ such that $(V, R(t))$ is isomorphic to F is closed in the set of points $t \in B$ such that $(V, R(t))$ is complete.

Proof. Denote by C the set of all points $t \in B$ such that $V_{t}=(V, R(t))$ is complete and let t_{n} be a sequence of points in C converging to a point t_{0} such that (i) $t_{0} \in C$, and (ii) $V_{t_{n}}=\left(V, R\left(t_{n}\right)\right)$ is isomorphic to F for all $n>0$. We prove that V_{0} is isomorphic to F. Let h_{n} be an isomorphism of F onto $V_{t_{n}}=\left(V, R\left(t_{n}\right)\right)$ and let r_{0} be an orthonormal frame in the tangent space $T_{0}(F)$ at p_{0} of F; denote by $r_{t_{n}}$ the orthonormal frame $h_{n}\left(r_{0}\right)$ at $x_{n}=h_{n}\left(p_{0}\right)$ in $V_{t_{n}}$. Since V_{0} is compact, the sequence of points $\left\{x_{n}\right\}$ has a limit point x_{0}. Since the set of all orthonormal frames at all points of a compact neighbourhood of x_{0} in V_{0} is again compact, the sequence $\left\{r_{t_{n}}\right\}$ admits a limit point r_{0}^{\prime}. Let l_{t} be the linear mapping of $T_{x_{1}}\left(V_{t}\right)$ onto $T_{x_{n}}\left(V_{t_{n}}\right)$ which maps r_{1} onto $r_{t_{n}}$; let u be a unit vector at x_{1} and let y be the end-point of the geodesic arc of length s, of origin x_{1} and tangent to u; then $y=\phi(s, u)$ where ϕ is a differentiable function of u and of s. If y_{t} is the end-point of the geodesic arc of origin x_{t} and tangent to $l_{t}(u)$, we have y_{t} $=\phi(s, u, t)$ where $\phi(s, u, 1)=\phi(s, u)$. For $t>0$, we have $y_{t}=h_{t}(y)$; as $t_{n} \rightarrow 0, h_{n}(u)$ tends to a vector $h_{0}(u)$ and $h_{n}(y)$ tends to a point $h_{0}(y)=\phi(s, u, 0)$. It is easy to see that h_{0} is a well-defined differentiable mapping of V_{1} into V_{0}; since V_{0} is complete, it follows that h_{0} is onto. We prove that h_{0} is one-to-one; let z_{1} and z_{2} be two distinct points of V_{1} and let d_{t} denote the metric defined by $R(t)$ on V_{t}. Since

[^0]
[^0]: ${ }^{1}$ This generalization of Theorem 2 in [1] has been suggested to me by Professor J. L. Koszul. The proof of Theorem 2 [1] has been suggested to me by Professor C. Ehresmann. This research is supported in part by NSF G-18834.

