A GENERALIZED MORSE THEORY

BY R. S. PALAIS AND S. SMALE

Communicated by Raoul Bott, September 9, 1963

1. Abstract theory. Let M be a C^2 -Riemannian manifold without boundary modeled on a separable Hilbert space (see Lang [3]). For $p \in M$ we denote by \langle , \rangle_p the inner product in the tangent space M_p and we define a function $\| \|$ on the tangent bundle T(M) by $\|v\|$ $=\langle v,v\rangle_p^{1/2}$ for $v\in M_p$. Given p and q in the same component of M we define $\rho(p, q) = \text{Inf} \int_0^1 ||\sigma'(t)|| dt$, where the Inf is over all C^1 paths $\sigma: [0, 1] \to M$ such that $\sigma(0) = p$ and $\sigma(1) = q$. Just as in the finite dimensional case one shows that ρ is a metric on each component of M which is consistent with the manifold topology. If each component of M is complete in this metric M is called a complete Riemannian manifold and we assume this in all that follows. Let $f: M \rightarrow R$ be a C^2 function. Then df, the differential of f, is a C^1 cross section of the cotangent bundle of M, hence there is a uniquely determined C^1 vector field ∇f on M, the gradient of f, such that $df_p(v)$ $=\langle v, \nabla f(p) \rangle_p$ for $v \in M_p$. We denote by ϕ_t the maximum local oneparameter group generated by $-\nabla f$. A critical point of f is a point where ∇f vanishes; equivalently a stationary point of ϕ_t . At a critical point p of f there is a uniquely determined continuous bilinear form $H(f)_p$ on M_p , the Hessian of f at p, such that $H(f)_p(u, v)$ $=d^2(f\circ\phi^{-1})(d\phi_p(u),d\phi_p(v))$ if ϕ is any chart at p. The supremum of the dimensions of subspaces on which $H(f)_p$ is negative (positive) definite is called the index (coindex) of f at p. $H(f)_p$ is symmetric, hence there is a uniquely determined bounded self-adjoint operator A on M_p such that $H(f)_p(u, v) = \langle Au, v \rangle_p$. The critical point p is called nondegenerate if A has a bounded inverse. In this case p is isolated in the set of critical points.

Let $f^{a,b} = f^{-1}[a, b]$ and $f^b = f^{-\infty,b}$. Morse theory is concerned with relating the structure of the critical point set of f in $f^{a,b}$ with the homology, homotopy, homeomorphism, and diffeomorphism type of the pair (f^b, f^a) . We shall be concerned with the Morse theory of pairs (M, f) as above which satisfy at least the following extra condition:

(C) If S is a subset of M on which |f| is bounded but on which $||\nabla f||$ is not bounded away from zero, then there is a critical point of

Note that if f is proper (which implies that M is finite dimensional) and in particular if M is compact then condition (C) is automatically satisfied. More interesting though is the fact, which we will make

f in the closure of S.