THE DIMENSION OF THE SUPPORT OF A RANDOM DISTRIBUTION FUNCTION

BY J. R. KINNEY AND T. S. PITCHER
Communicated by Michel Loève, August 21, 1963

In their paper Random distribution functions (Bull. Amer. Math. Soc. 69 (1963), 548-551) L. E. Dubins and D. A. Freedman defined a random distribution function F associated with a probability measure μ on the unit square S whose values are distribution functions on [0,1]. To choose a value F_{ω} of F they proceed as follows: Points $P(n, j)$ of S are defined inductively for all n and $j=0, \cdots, 2^{n}$ by setting $P(0,0)=(0,0), P(0,1)=(1,1), P(n+1,2 j)=P(n, j)$ and $P(n+1,2 j+1)$ equal to the image under the unique affine transformation carrying S onto the rectangle $R(P(n, j), P(n, j+1))$ formed by the vertical and horizontal lines through $P(n, j)$ and $P(n, j+1)$ of a point $P^{*}(n+1,2 j+1)=\left(x^{*}(n, 2 j+1), y^{*}(n, 2 j+1)\right)$ chosen according to the distribution μ independently of the previous choices. They showed that $\bigcap_{n=1}^{\infty} \cup_{j=0}^{2^{n}} R(P(n, j), P(n, j+1))$ is the graph of a continuous monotone function $F_{\omega}(x)$ increasing from 0 to 1 on $[0,1]$, that is, a distribution function defining a measure $\widetilde{F}_{\omega}(E)$ $=\int_{E} d F_{\omega}(x)$ on measurable $E \subset[0,1]$. The inverse of $F_{\omega}(x)$ is also a continuous everywhere increasing function which we call $G_{\omega}(y)$ with corresponding measure $\widetilde{G}_{\omega}(E)$. Let

$$
\begin{aligned}
I(n, j) & =[x(n, j-1), x(n, j)] \\
J(n, j) & =[y(n, j-1), y(n, j)]
\end{aligned}
$$

and

$$
I(n, x)=I(n, j), J(n, x)=J(n, j) \text { for that } j \text { for which } x \in I(n, j)
$$

$I(n, y)$ and $J(n, y)$ are defined similarly. Let $I^{*}(n, 2 j+\epsilon)$ $=\left[0, x^{*}(n, 2 j+1)\right]$ or $\left[x^{*}(n, 2 j+1), 1\right]$ and $J^{*}(n, 2 j+\epsilon)$ $=\left[0, y^{*}(n, 2 j+1)\right]$ or $\left[y^{*}(n, 2 j+1), 1\right]$ according as ϵ equals 0 or 1 . We shall write $|I|$ for the length of the interval I, and $h(a, b)$ for the function on S given by $h(a, b)=a \log b+(1-a) \log _{2}(1-b)$. All logarithms are taken to the base 2 . For any function $k(x, y)$ on S we set

$$
E_{\mu}(k(x, y))=\int_{0}^{1} \int_{0}^{1} k(x, y) d \mu(x, y)
$$

and

$$
\sigma_{\mu}^{2}(k(x, y))=E_{\mu}\left(\left[k(x, y)-E_{\mu}(k(x, y))\right]^{2}\right) .
$$

