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In their paper Random distribution functions (Bull. Amer. Math. 
Soc. 69 (1963), 548-551) L. E. Dubins and D. A. Freedman defined 
a random distribution function F associated with a probability meas
ure fx on the unit square S whose values are distribution functions on 
[0, l ] . To choose a value Pw of F they proceed as follows: Points 
P(n, j) of S are defined inductively for all n and j = 0, • • • , 2W by 
setting P(0, 0) = (0, 0), P(0, 1) = (1, 1), P (n + 1, 2 j )=P(» , j) and 
P ( ^ + l, 2j+l) equal to the image under the unique affine trans
formation carrying 5 onto the rectangle R(P(n, j), P(n, j+1)) 
formed by the vertical and horizontal lines through P(n, j) and 
P(n, j+1) of a point P*(» + l, 2 j + l ) = (**(*, 2/ + 1), y*(», 2 j + l ) ) 
chosen according to the distribution fx independently of the previous 
choices. They showed that f d U£0 R(P(n, j), P(n, j+1)) is the 
graph of a continuous monotone function Fa(x) increasing from 0 to 
1 on [0, l ] , tha t is, a distribution function defining a measure PU(E) 
— fsdFufa) on measurable £ C [ 0 , l ] . The inverse of Pw(x) is also a 
continuous everywhere increasing function which we call Gw(y) with 
corresponding measure öw(£). Let 

/(»,.ƒ) = [*(fl,i - 1), *(»,.ƒ)], 

^Ki ) = [y(»,i ~ i), y(»,i)] 
and 

7(w, a?) = I(n9j)9 J(n, x) = J(n,j) for that y for which x £ I(n9j). 

I(n, y) and / ( # , y) are defined similarly. Let I*(n, 2j + e) 
= [0, x*(n, 2j + l ) ] or [x*(n, 2j + 1), l ] and J*(n, 2j + e) 
= [0, y*(n, 2,7 + 1)] or \y*(n, 2j + l), l ] according as e equals 0 or 1. 
We shall write 11\ for the length of the interval I , and h(a, b) for 
the function on 5 given by h(a, b)=a log 6 + (l — a) log2 (1—6). All 
logarithms are taken to the base 2. For any function k(x, y) on 5 we 
set 

£„(*(*> y)) = j I *(*> ?)<&*(*, y) 

and 

*l(k(x, y)) = £„([*(*, y) - ^(K*,y))]2). 
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