SCATTERING THEORY

BY PETER D. LAX ${ }^{1}$ AND RALPH S. PHILLIPS ${ }^{2}$

Communicated September 6, 1963

1. Let H be a Hilbert space, $U(t)$ a group of unitary operators. A closed subspace D_{+}of H will be called outgoing if it has the following properties:
(i) $U(t) D_{+} \subset D_{+}$for t positive.
(ii) $\cap_{t>0} U(t) D_{+}=\{0\}$.
(iii) $U_{t<0} U(t) D_{+}$dense in H.

A prototype of the above situation is when H is $L_{2}(-\infty, \infty ; N)$, i.e., the space of square integrable functions on the whole real axis whose values lie in some accessory Hilbert space $N, U(t)$ is translation by t, and D_{+}is $L_{2}(0, \infty ; N)$.

Theorem $1 .{ }^{3}$ If D_{+}is outgoing for the group $U(t)$, then H can be represented isometrically as $L_{2}(-\infty, \infty ; N)$ so that $U(t)$ is translation and D_{+}is the space of functions with support on the positive reals. This representation is unique up to isomorphisms of N.

We shall call this representation an outgoing translation representation of the group.

Taking the Fourier transform we obtain an outgoing spectral representation of the group $U(t)$, where elements of D_{+}are represented as functions in $A_{+}(N)$, that is the Fourier transform of $L(0, \infty ; N)$. According to the Paley-Wiener theorem $A_{+}(N)$ consists of boundary values of functions with values in N, analytic in the upper half-plane whose square integrals along lines $\operatorname{Im} z=$ const are uniformly bounded.

An incoming subspace D_{-}is defined similarly and an analogous representation theorem holds, D _ being represented by functions with support on the negative axis, that is, by $L_{2}\left(-\infty, 0 ; N_{-}\right) . N_{-}$and N are unitarily equivalent and will henceforth be identified. In the application to the wave equation there is a natural identification of N and N_{-}.

Let D_{+}and D_{-}be outgoing and incoming subspaces respectively for the same unitary group, and suppose that D_{+}and D_{-}are orthogonal. To each function $f \in H$ there are associated two functions k_{-} and k_{+}, the respective incoming and outgoing translation representa-

[^0]
[^0]: ${ }^{1}$ Sloan Fellow.
 ${ }^{2}$ Sponsored by the National Science Foundation, contract NSF-G 16434.
 ${ }^{3}$ We were informed by Professor Sinai that he has obtained and used a similar theorem.

