WEIGHTED TRIGONOMETRICAL APPROXIMATION ON R¹ WITH APPLICATION TO THE GERM FIELD OF A STATIONARY GAUSSIAN PROCESS

BY N. LEVINSON AND H. P. MC KEAN, JR.¹ Communicated by J. L. Doob, September 13, 1963

Given an even, nonnegative, Lebesgue measurable weight $\Delta = \Delta(a)$ $(a \in \mathbb{R}^1)$ with $\int \Delta < \infty$, let Z be the (real) Hilbert space of Lebesgue measurable functions f with $f^*(-a) = f(a)$ and $||f|| = \sqrt{\int |f|^2} \Delta < \infty$, subject to the usual identifications, let Z^{ed} be the span (in Z) of e^{iat} $(c \leq t \leq d)$, and introduce the following subspaces of Z:

(a) $Z^{-}=Z^{-\infty 0}$,

(b) $Z^+ = Z^{0\infty}$,

(c) $Z^{+/-}$ = the projection of Z^+ upon Z^- ,

(d) Z^{\bullet} = the class of entire functions $f = f(\gamma)$ ($\gamma = a + ib$) of minimal exponential type which, restricted to the line b = 0, belong to Z,

(e) $Z^{0+} = \bigcap_{\delta > 0} Z^{0\delta}$,

(f) Z_{\bullet} = the span of (real) polynomials of *ia* belonging to Z_{\bullet} ,

(g) $Z^{-\infty} = \bigcap_{t < 0} Z^{-\infty t}$.

 Δ is a Hardy weight if

$$\int \frac{lg^{-\Delta}}{1+a^2} > -\infty;$$

such a Hardy weight is expressible as $|h|^2$, *h* being an (outer) function belonging to the Hardy class of functions $f(\gamma)$ ($\gamma = a + ib$)($\gamma^* = a - ib$) regular in the half plane (b > 0) with $f^*(-a) = f(a)$ and $\int |f(a+ib)|^2 da$ bounded (b > 0). $Z \neq Z^-$ or $Z = Z^- = Z^{-\infty}$ according as Δ is Hardy or not, a fact that goes back to Szegö.

Given a Hardy weight, it can be proved that

$$Z^{-} \supset Z^{+/-} \supset Z^{-} \cap Z^{+} \supset Z^{\bullet} \supset Z^{0+} \supset Z_{\bullet},$$

and the problem is to decide if some or all of the above subspaces coincide, special attention being paid to $Z^{+/-}$ and Z^{0+} for probabilistic reasons explained below. $Z^{0+}=Z^{\bullet}$ for the general Hardy weight, but the other inclusions can be strict; for instance, $Z^- \neq Z^{+/-}$ if and only if $\mathbf{j} = h/h^*$, restricted to the line b=0, agrees with the ratio of two inner functions, while $Z^{+/-}=Z^{\bullet}$ ($=Z^{0+}$) if and only if the reciprocal h^{-1} of the outer Hardy function h figuring in $\Delta = |h|^2$ is an entire function of minimal exponential type. $Z^{\bullet} \neq Z_{\bullet}$ is possible even for such

¹ The preparation of this paper was supported in part by the Office of Naval Research and in part by the National Science Foundation GP-149.